DOI: https://doi.org/10.15587/1729-4061.2017.108574

Modeling of daily temperature mode in premises using a predictive controller

Petro Kachanov, Oleg Yevseienko

Abstract


The goal of present work is to decrease electric power consumption in a building employing the developed control method that uses a prediction filter. To accomplish this goal, a model of the premises was constructed in the ANSYS Fluent software and a PWM predictive controller was synthesized. Modeling of daily state of the premises with maintenance of assigned temperature using the predictive controller, a two-position controller and a PID-control was performed. Results of modeling demonstrate that the use of predicting controller, taking into account parameters of the building, heating and ventilation systems, outdoor air temperature with maintaining minimal permissible operating air temperature in the premises at night, at weekends and on holidays, makes it possible to save heat resources. Refusal from continuous control and transition to the PWM predictive controller demonstrated a decrease in operating time of heating equipment by 2.3 times from 24 to 10.5 hours. The proposed control method showed the best controlling accuracy equal to 5 %, compared to a two-position control with hysteresis and a PID-control.


Keywords


simulation of thermal field of premises; predictive controller; pulse-width modulation (PWM); PWM control; heat supply to office building

References


Mirovyie tendentsyi povyisheniya energoeffektivnosti zdaniy (2012). Energosberezhenie, 5, 38–42.

Seppanen, O. (2013). Povyishenie energoeffektivnosti. Zakonodatelstvo ES. Zdaniya vyisokih tehnologiy. Available at: http://zvt.abok.ru/articles/80/Povishenie_energoeffektivnosti_Zakonodatelstvo_ES

Direktiva Evropeyskogo parlamenta i Soveta 2010/31/EC ot 19 maya 2010 goda ob energosberezheniy zdaniy (2010). Оfitsialniy vestnik Evropeyskogo Soyuza. Available at: http://esco.agency/ru/library/directive_2010_31_EC_rus.pdf

Energetichna strategiya Ukrayini na period do 2035 roku. Available at: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=244979237

Savytskyi, S. M., Hapon, A. I., Kachanov, P. O., Yevseienko, O. M., Vyskrebentsev, V. O. (2013). Pat. No. 81276 UA. Sposib prohramnoho upravlinnia teplovym obiektom z zastosuvanniam shyrotno-impulsnoi moduliatsyi. MPK G05D 23/19 (2006.01). No. u201300059; declareted: 02.01.2013; published: 25.06.2013, Bul. No. 12, 4.

Rotov, P. V. (2011). Sposobyi regulirovaniya teplovoy nagruzki sistem teplosnabzheniya. Perspektivyi razvitiya. ESKO, 10. Available at: http://www.journal.esco.co.ua/2011_10/art069.htm

Degtyar, A. B., Panferov, V. I. (2008). Postroenie algoritma impulsnogo otopleniya zdaniy i issledovanie rezhimov ego raboty. Vestnik YuUrGU. Seriya: Kompyuternyie tehnologiy, upravlenie, radioelektronika, 8 (17 (117)), 41–44.

Lee, K.-H., Joo, M.-C., Baek, N.-C. (2015). Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods. Energies, 8 (9), 9344–9364. doi: 10.3390/en8099344

Cellucci, G. (2009). Optimize HVAC Controls And Energy Management Systems. Building Automation, 28–29.

Hart, R. (2012). Advanced unitary HVAC control sequence. ASHRAE Trans, 118 (1), 628–635.

Afram, A., Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment, 72, 343–355. doi: 10.1016/j.buildenv.2013.11.016

Jin, G.-Y., Tan, P.-Y., Ding, X.-D., Koh, T.-M. (2011). Cooling Coil Unit dynamic control of in HVAC system. 2011 6th IEEE Conference on Industrial Electronics and Applications. doi: 10.1109/iciea.2011.5975722

Moradi, H., Saffar-Avval, M., Bakhtiari-Nejad, F. (2011). Nonlinear multivariable control and performance analysis of an air-handling unit. Energy and Buildings, 43 (4), 805–813. doi: 10.1016/j.enbuild.2010.11.022

Anderson, M., Buehner, M., Young, P., Hittle, D., Anderson, C., Jilin Tu, Hodgson, D. (2008). MIMO Robust Control for HVAC Systems. IEEE Transactions on Control Systems Technology, 16 (3), 475–483. doi: 10.1109/tcst.2007.903392

Henze, G. P., Felsmann, C., Knabe, G. (2004). Evaluation of optimal control for active and passive building thermal storage. International Journal of Thermal Sciences, 43 (2), 173–183. doi: 10.1016/j.ijthermalsci.2003.06.001

Huang, G. (2011). Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity. Control Engineering Practice, 19 (7), 700–710. doi: 10.1016/j.conengprac.2011.03.005

Homod, R. Z., Sahari, K. S. M., Almurib, H. A. F., Nagi, F. H. (2012). Gradient auto-tuned Takagi-Sugeno Fuzzy Forward control of a HVAC system using predicted mean vote index. Energy and Buildings, 49, 254–267. doi: 10.1016/j.enbuild.2012.02.013

Navale, R. L., Nelson, R. M. (2010). Use of evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil. Energy and Buildings, 42 (11), 2213–2218. doi: 10.1016/j.enbuild.2010.07.017

Attia, A.-H., Rezeka, S. F., Saleh, A. M. (2015). Fuzzy logic control of air-conditioning system in residential buildings. Alexandria Engineering Journal, 54 (3), 395–403. doi: 10.1016/j.aej.2015.03.023

Krukovskiy, P. G., Yurchenko, D. D., Parkhomenko, G. A., Tadlya, O. Yu., Polubinskiy, A. S. (2009). CFD-modelirovanie teplovogo rezhima pomeshcheniya s razlichnymi sistemami otopleniya. Ch. 1. Razrabotka trekhmernykh CFD-modeley v sopryazhennoy postanovke. Promyshlennaya Teplotekhnika, 5, 56–61.

Yevseienko, O. N., Savitskiy, S. M., Salnikov, D. V. (2014). Poluchenie iskhodnykh dannykh dlya provedeniya eksperimenta po upravleniyu temperaturoy obekta s pomoshchyu ShIM-modulyatsiy i predskazyvayushchego filtra. Fіziko-tekhnologіchnі problemi radіotekhnіchnikh pristroiv, zasobіv telekomunіkatsіy, nano- ta mіkroelektronіki. Сhernivtsi, 165–166.

Yevseenko, O. N., Kachanov, P. A. (2014). Podderzhanie zadannoy temperatury inertsionnogo obekta s ispolzovaniem ShIM-regulirovaniya s predskazaniem. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriya: Avtomatyka ta pryladobuduvannia, 67, 18–28.


GOST Style Citations


Mirovyie tendentsyi povyisheniya energoeffektivnosti zdaniy [Text] // Energosberezhenie. – 2012. – Issue 5. – P. 38–42.

Seppanen, O. Povyishenie energoeffektivnosti. Zakonodatelstvo ES [Electronic resource] / O. Seppanen // Zdaniya vyisokih tehnologiy. – 2013. – Available at: http://zvt.abok.ru/articles/80/Povishenie_energoeffektivnosti_Zakonodatelstvo_ES

Direktiva Evropeyskogo parlamenta i Soveta 2010/31/EC ot 19 maya 2010 goda ob energosberezheniy zdaniy [Text] // Оfitsialniy vestnik Evropeyskogo Soyuza. – 2010. – Available at: http://esco.agency/ru/library/directive_2010_31_EC_rus.pdf

Energetichna strategiya Ukrayini na period do 2035 roku [Electronic resource]. – Available at: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=244979237

Pat. No. 81276 UA. Sposib prohramnoho upravlinnia teplovym obiektom z zastosuvanniam shyrotno-impulsnoi moduliatsyi. MPK G05D 23/19 (2006.01) [Text] / Savytskyi S. M., Hapon A. I., Kachanov P. O., Yevseienko O. M., Vyskrebentsev V. O.; zaiavnyk Nats. tekhn. un-t «Kharkiv. politekhn. in-t». – No. u201300059; declareted: 02.01.2013; published: 25.06.2013, Bul. No. 12. – 4 p.

Rotov, P. V. Sposobyi regulirovaniya teplovoy nagruzki sistem teplosnabzheniya. Perspektivyi razvitiya [Electronic resource] / P. V. Rotov // ESKO. – 2011. – Issue 10. – Available at: http://www.journal.esco.co.ua/2011_10/art069.htm

Degtyar, A. B. Postroenie algoritma impulsnogo otopleniya zdaniy i issledovanie rezhimov ego raboty [Text] / A. B. Degtyar, V. I. Panferov // Vestnik YuUrGU. Seriya: Kompyuternyie tehnologiy, upravlenie, radioelektronika. – 2008. – Vol. 8, Issue 17 (117). – P. 41–44.

Lee, K.-H. Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods [Text] / K.-H. Lee, M.-C. Joo, N.-C. Baek // Energies. – 2015. – Vol. 8, Issue 9. – P. 9344–9364. doi: 10.3390/en8099344 

Cellucci, G. Optimize HVAC Controls And Energy Management Systems [Text] / G. Cellucci // Building Automation. – 2009. – P. 28–29.

Hart, R. Advanced unitary HVAC control sequence [Text] / R. Hart // ASHRAE Trans. – 2012. – Vol. 118, Issue 1. – P. 628–635.

Afram, A. Theory and applications of HVAC control systems – A review of model predictive control (MPC) [Text] / A. Afram, F. Janabi-Sharifi // Building and Environment. – 2014. – Vol. 72. – P. 343–355. doi: 10.1016/j.buildenv.2013.11.016 

Jin, G.-Y. Cooling Coil Unit dynamic control of in HVAC system [Text] / G.-Y. Jin, P.-Y. Tan, X.-D. Ding, T.-M. Koh // 2011 6th IEEE Conference on Industrial Electronics and Applications. – 2011. doi: 10.1109/iciea.2011.5975722 

Moradi, H. Nonlinear multivariable control and performance analysis of an air-handling unit [Text] / H. Moradi, M. Saffar-Avval, F. Bakhtiari-Nejad // Energy and Buildings. – 2011. – Vol. 3, Issue 4. – P. 805–813. doi: 10.1016/j.enbuild.2010.11.022 

Anderson, M. MIMO Robust Control for HVAC Systems [Text] / M. Anderson, M. Buehner, P. Young, D. Hittle, C. Anderson, J. Tu, D. Hodgson // IEEE Transactions on Control Systems Technology. – 2008. – Vol. 16, Issue 3. – P. 475–483. doi: 10.1109/tcst.2007.903392 

Henze, G. P. Evaluation of optimal control for active and passive building thermal storage [Text] / G. P. Henze, C. Felsmann, G. Knabe // International Journal of Thermal Sciences. – 2004. – Vol. 43, Issue 2. – P. 173–183. doi: 10.1016/j.ijthermalsci.2003.06.001 

Huang, G. Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity [Text] / G. Huang // Control Engineering Practice. – 2011. – Vol. 19, Issue 7. – P. 700–710. doi: 10.1016/j.conengprac.2011.03.005 

Homod, R. Z. Gradient auto-tuned Takagi-Sugeno Fuzzy Forward control of a HVAC system using predicted mean vote index [Text] / R. Z. Homod, K. S. M. Sahari, H. A. F. Almurib, F. H. Nagi // Energy and Buildings. – 2012. – Vol. 49. – P. 254–267. doi: 10.1016/j.enbuild.2012.02.013 

Navale, R. L. Use of evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil [Text] / R. L. Navale, R. M. Nelson // Energy and Buildings. – 2010. – Vol. 42, Issue 11. – P. 2213–2218. doi: 10.1016/j.enbuild.2010.07.017 

Attia, A.-H. Fuzzy logic control of air-conditioning system in residential buildings [Text] / A.-H. Attia, S. F. Rezeka, A. M. Saleh // Alexandria Engineering Journal. – 2015. – Vol. 54, Issue 3. – P. 395–403. doi: 10.1016/j.aej.2015.03.023 

Krukovskiy, P. G. CFD-modelirovanie teplovogo rezhima pomeshcheniya s razlichnymi sistemami otopleniya. Ch. 1. Razrabotka trekhmernykh CFD-modeley v sopryazhennoy postanovke [Text] / P. G. Krukovskiy, D. D. Yurchenko, G. A. Parkhomenko, O. Yu. Tadlya, A. S. Polubinskiy // Promyshlennaya Teplotekhnika. – 2009. – Issue 5. – P. 56–61.

Yevseienko, O. N. Poluchenie iskhodnykh dannykh dlya provedeniya eksperimenta po upravleniyu temperaturoy obekta s pomoshchyu ShIM-modulyatsiy i predskazyvayushchego filtra [Text]: Mezhdunar. nauk.-prakt. konf. / O. N. Yevseienko, S. M. Savitskiy, D. V. Salnikov // Fіziko-tekhnologіchnі problemi radіotekhnіchnikh pristroiv, zasobіv telekomunіkatsіy, nano- ta mіkroelektronіki. – Сhernivtsi, 2014. – P. 165–166.

Yevseenko, O. N. Podderzhanie zadannoy temperatury inertsionnogo obekta s ispolzovaniem ShIM-regulirovaniya s predskazaniem [Text] / O. N. Yevseenko, P. A. Kachanov // Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriya: Avtomatyka ta pryladobuduvannia. – 2014. – Issue 67. – P. 18–28.







Copyright (c) 2017 Petro Kachanov, Oleg Yevseienko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061