Mathematical modeling of systemic colorometric parameters unmasking wild waterfowl

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110107

Keywords:

waterfowl, unmasking, protective coloration, colorometric parameters, image processing, rechronization, systemic aspect, trajectory of a system, phytocenosis, mallard duck

Abstract

The research presents results of modeling of systemic colorometric parameters, unmasking wild waterfowl.

The problem of unmasking wild waterfowl is acquiring practical relevance in connection with problems of biosafety. Such problems are associated with hotbeds and ways of spreading of avian influenza and a number of other dangerous infections and infestations. Moreover, the study of regularities of formation of animals’ protective coloration is of interest in terms of a number of fundamental problems of biology and ecology.

As a result of conducted research with the use of a new class of mathematical models (DMDS), the authors offered a formalized description of systemic aspects that distinguish between protective coloration of mallard ducks and colorometric parameters of plant communities. The idealized trajectory of the system, reflecting dynamics of colorometric parameters of phytocenosis in the habitat of mallard duck, was constructed. The idealized pseudo-trajectory of the system, reflecting a set of combinations of colorometric parameters of protective coloration of mallard duck, was constructed. The kind of systemic colorometric parameter, which allows unmasking the mallard duck against the background of phytocenosis, was determined. Root mean square deviation of values of difference of colorometric parameters of digital photography of the researched area was selected as the systemic colorometric parameter. The systemic colorometric parameter reflects variability of ratios of difference of values of colorometric parameters in the sample of microsegments, into which the segments of the image of the studied area are divided. The obtained results offer new approaches to development of remote methods of studying living conditions and migration routes of wild waterfowl.

Author Biographies

Yuriі Balym, Kharkiv State Zooveterinary Academy Academichna str., 1, Malaya Danylivka, Dergachi district, Kharkiv region, Ukraine, 62341

Doctor of Veterinary Science, Professor

Department of Reproductology

Olena Vуsotska, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Biomedical Engineering

Anna Pecherska, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD

Department of Biomedical Engineering

Yurii Bespalov, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Researcher

Department of Biomedical Engineering

References

  1. Rusev, I. T., Vinnik, V. D., Sokolovskiy, D. A. (2012). Birds as the probable factor of introduction and spread of highly pathogenic avian influenza H5N1 in megapolis conditions. Visnyk of Dnipropetrovsk University, 3 (1), 125–132.
  2. Usovik, I. V., Darnopyh, V. V. (2013). Avtomatizirovanniy programmnyy kompleks dlya parametricheskogo analiza i optimizacii planirovaniya celevogo funkcionirovaniya kosmicheskih sistem DZZ. Elektronniy zhurnal «Trudy MAI», 65. Available at: http://trudymai.ru/published.php?ID=35957
  3. Kolesnikov, V. V., Ketova, N. S., Brandler, O. V. (2011). Vozmozhnosti ispol'zovaniya kosmicheskih snimkov dlya ucheta surkov. Teoreticheskaya i prikladnaya ekologiya, 3, 17–20.
  4. Tombre, I. M., Tømmervik, H., Madsen, J. (2005). Land use changes and goose habitats, assessed by remote sensing techniques, and corresponding goose distribution, in Vesterålen, Northern Norway. Agriculture, Ecosystems & Environment, 109 (3-4), 284–296. doi: 10.1016/j.agee.2005.02.023
  5. Vas, E., Lescroel, A., Duriez, O., Boguszewski, G., Gremillet, D. (2015). Approaching birds with drones: first experiments and ethical guidelines. Biology Letters, 11 (2), 20140754–20140754. doi: 10.1098/rsbl.2014.0754
  6. Zholtkevych, G., Nosov, K., Bespalov, Yu., Vysotskaya, E. et. al. (2016). Descriptive Models of System Dynamics. Proceedings of the 12th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, 1614, 57–72.
  7. Balym, Y., Georgiyants, M., Vуsotska, O., Pecherska, A., Porvan, A. (2017). Mathematical modeling of the colorimetric parameters for remote control over the state of natural bioplato. Eastern-European Journal of Enterprise Technologies, 4 (10 (88)), 29–36. doi: 10.15587/1729-4061.2017.108415
  8. Nosov, K., Zholtkevych, G., Georgiyants, M., Vysotska, O., Balym, Y., Porvan, A. (2017). Development of the descriptive binary model and its application for identification of clumps of toxic cyanobacteria. Eastern-European Journal of Enterprise Technologies, 4 (4 (88)), 4–11. doi: 10.15587/1729-4061.2017.108285
  9. Bespalov, Y., Nosov, K., Kabalyants, P. (2017). Discrete dynamical model of mechanisms determining the relations of biodiversity and stability at different levels of organization of living matter. bioRxiv. doi: 10.1101/161687
  10. Hamel, M. A., Andréfouët, S. (2010). Using very high resolution remote sensing for the management of coral reef fisheries: Review and perspectives. Marine Pollution Bulletin, 60 (9), 1397–1405. doi: 10.1016/j.marpolbul.2010.07.002
  11. Goetz, S. J., Steinberg, D., Betts, M. G., Holmes, R. T., Doran, P. J., Dubayah, R., Hofton, M. (2010). Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology, 91 (6), 1569–1576. doi: 10.1890/09-1670.1
  12. Swatantran, A., Dubayah, R., Goetz, S., Hofton, M., Betts, M. G., Sun, M. et. al. (2012). Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion. PLoS ONE, 7 (1), e28922. doi: 10.1371/journal.pone.0028922
  13. Anderson, K., Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11 (3), 138–146. doi: 10.1890/120150
  14. Hernández-Clemente, R., Navarro-Cerrillo, R. M., Zarco-Tejada, P. J. (2012). Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT+DART simulations. Remote Sensing of Environment, 127, 298–315. doi: 10.1016/j.rse.2012.09.014
  15. Feret, J.-B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P. R. et. al. (2008). PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112 (6), 3030–3043. doi: 10.1016/j.rse.2008.02.012
  16. Chávez, R. O., Clevers, J. G. P. W., Herold, M., Ortiz, M., Acevedo, E. (2013). Modelling the spectral response of the desert tree Prosopis tamarugo to water stress. International Journal of Applied Earth Observation and Geoinformation, 21, 53–65. doi: 10.1016/j.jag.2012.08.013
  17. Zholtkevych, G. N., Bespalov, Yu. G., Nosov, K. V., Visotskaya, E. V., Pecherska, A. I. (2014). Discrete model of dynamical systems of relationships between spectral characteristics of grass for remote sensing of effects disclosing locust crowds. Materials of the X International scientific and practical conference, «Prospects of world science». Sheffield: Science and education LTD, 11–13.
  18. Zholtkevych, G. N., Bespalov, G. Y., Nosov, K. V., Abhishek, M. (2013). Discrete Modeling of Dynamics of Zooplankton Community at the Different Stages of an Antropogeneous Eutrophication. Acta Biotheoretica, 61 (4), 449–465. doi: 10.1007/s10441-013-9184-6

Downloads

Published

2017-10-30

How to Cite

Balym, Y., Vуsotska O., Pecherska, A., & Bespalov, Y. (2017). Mathematical modeling of systemic colorometric parameters unmasking wild waterfowl. Eastern-European Journal of Enterprise Technologies, 5(2 (89), 12–18. https://doi.org/10.15587/1729-4061.2017.110107