Mössbauer studies of spinellides of Mg(FeXCr2-X)O4 system obtained by the hydroxide co-precipitation method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.112271

Keywords:

Mössbauer spectroscopy, magnesium ferrite-chromites, spinel, crystalline structure, precipitation method

Abstract

To establish regularities in formation of the magnetic microstructure in magnesium ferrite-chromites by the method of co-precipitation of hydroxides from chlorides of corresponding salts, ferrite spinels were synthesized with Mg(FexCr2-x)O4 composition. It was found by the method of X-ray diffraction analysis that the resulting spinel occupies an intermediate position between normal and inverse spinels. Substitution of chromium for a part of trivalent iron ions in the spinel phases leads to normalization of the spinel structure. The magnetic microstructure of the resulting samples, distribution of iron among sublattices and presence of Fe2+ ions were investigated by the method of Mössbauer spectroscopy.

It was established that the magnetically ordered phase is only present in samples with x>1.6. Due to the non-high sintering temperature, low symmetry of the near surrounding and continuous distribution of effective magnetic fields on the Fe3+ nuclei were observed in the samples. Analysis of the results of Mössbauer and X-ray structural studies has shown deviation of the real near surrounding of the iron ion from the most probable surrounding. No Fe2+ ions were detected by the Mössbauer method in these samples. There is a good agreement in the relation between population of the iron ions among octahedral and tetrahedral sublattices (2.0) found by methods of X-ray and Mössbauer analysis. The obtained information confirms significant dependence of the properties of ferrite-spinels on the features of synthesis and shows necessity of checking the sample characteristics during changes or modifications in the production methods.

Author Biographies

Anna Luсas, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Theoretical and Applied Chemistry

Volodymyr Moklyak, G. V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine Akademika Vernadskoho blvd., 36, Kyiv, Ukraine, 03142

PhD, Senior Researcher

Ivan Yaremiy, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science and New Technologies

Sofiya Yaremiy, Ivano-Frankivsk National Medical University Halytska str., 2, Ivano-Frankivsk, Ukraine, 76018

PhD, Assistant

Department of Medical Informatics, Medical and Biological Physics

Ivan Gasyuk, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

Doctor of Physical and Mathematical Sciences, Professor

Department of Materials Science and New Technologies

Mykola Matkivskyi, Vasyl Stefanyk Precarpathian National University Shevchenka str., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Associate Professor

Department of Theoretical and Applied Chemistry

References

  1. Rai, A. K., Thi, T. V., Gim, J., Kim, J. (2014). Combustion synthesis of MgFe2O4/graphene nanocomposite as a high-performance negative electrode for lithium ion batteries. Materials Characterization, 95, 259–265. doi: 10.1016/j.matchar.2014.06.024
  2. Pan, Y., Zhang, Y., Wei, X., Yuan, C., Yin, J., Cao, D., Wang, G. (2013). MgFe2O4 nanoparticles as anode materials for lithium-ion batteries. Electrochimica Acta, 109, 89–94. doi: 10.1016/j.electacta.2013.07.026
  3. Stefan, E., Irvine, J. T. S. (2010). Synthesis and characterization of chromium spinels as potential electrode support materials for intermediate temperature solid oxide fuel cells. Journal of Materials Science, 46 (22), 7191–7197. doi: 10.1007/s10853-010-4489-1
  4. Rida, K., Benabbas, A., Bouremmad, F., Peña, M. A., Martínez-Arias, A. (2010). Influence of the synthesis method on structural properties and catalytic activity for oxidation of CO and C3H6 of pirochromite MgCr2O4. Applied Catalysis A: General, 375 (1), 101–106. doi: 10.1016/j.apcata.2009.12.024
  5. Tripathi, V. K., Nagarajan, R. (2015). Rapid Synthesis of Mesoporous, Nano-Sized MgCr2O4and Its Catalytic Properties. Journal of the American Ceramic Society, 99 (3), 814–818. doi: 10.1111/jace.14036
  6. Reddy, D. H. K., Yun, Y.-S. (2016). Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coordination Chemistry Reviews, 315, 90–111. doi: 10.1016/j.ccr.2016.01.012
  7. Zhurakovskiy, E. A., Kirichek, P. P. (1985). Elektronnye sostoyaniya v ferrimagnetikah. Kyiv: Naukova dumka, 280.
  8. Sabri, K., Rais, A., Taibi, K., Moreau, M., Ouddane, B., Addou, A. (2016). Structural Rietveld refinement and vibrational study of MgCr x Fe 2−x O 4 spinel ferrites. Physica B: Condensed Matter, 501, 38–44. doi: 10.1016/j.physb.2016.08.011
  9. Zakaria, A. K. M., Nesa, F., Saeed Khan, M. A., Datta, T. K., Aktar, S., Liba, S. I. et. al. (2015). Cation distribution and crystallographic characterization of the spinel oxides MgCrxFe2−xO4 by neutron diffraction. Journal of Alloys and Compounds, 633, 115–119. doi: 10.1016/j.jallcom.2015.01.179
  10. Nesa, F., Zakaria, A. K. M., Khan, M. A. S., Yunus, S. M., Das, A. K., Eriksson, S.-G. et. al. (2012). Structural and Magnetic Properties of Cr3+ Doped Mg Ferrites. World Journal of Condensed Matter Physics, 2 (1), 27–35. doi: 10.4236/wjcmp.2012.21005
  11. Durrani, S. K., Naz, S., Nadeem, M., Khan, A. A. (2014). Thermal, structural, and impedance analysis of nanocrystalline magnesium chromite spinel synthesized via hydrothermal process. Journal of Thermal Analysis and Calorimetry, 116 (1), 309–320. doi: 10.1007/s10973-013-3531-3
  12. Barbu, M., Stefanescu, M., Stoia, M., Vlase, G., Barvinschi, P. (2012). New synthesis method for M(II) chromites/silica nanocomposites by thermal decomposition of some precursors formed inside the silica gels. Journal of Thermal Analysis and Calorimetry, 108 (3), 1059–1066. doi: 10.1007/s10973-011-1933-7
  13. Raghasudha, M., Ravinder, D., Veerasomaiah, P. (2015). Electrical resistivity studies of Cr doped Mg nano-ferrites. Materials Discovery, 2, 50–54. doi: 10.1016/j.md.2016.05.001
  14. Kuśtrowski, P., Chmielarz, L., Rafalska-Łasocha, A., Dudek, B., Pattek-Janczyk, A., Dziembaj, R. (2006). Catalytic reduction of N2O by ethylbenzene over novel hydrotalcite-derived Mg–Cr–Fe–O as an alternative route for simultaneous N2O abatement and styrene production. Catalysis Communications, 7 (12), 1047–1052. doi: 10.1016/j.catcom.2006.05.014
  15. Osborne, M. D., Fleet, M. E., Bancroft, G. M. (1983). Mössbauer study of Mg, Zn substituted Cr-spinel. Solid State Communications, 48 (8), 663–664. doi: 10.1016/0038-1098(83)90046-7
  16. Klemme, S., Ahrens, M. (2005). Low-temperature heat capacity of magnesioferrite (MgFe2O4). Physics and Chemistry of Minerals, 32 (5-6), 374–378. doi: 10.1007/s00269-005-0003-8
  17. Singh, M. R., Bhargava, S. C. (1992). The anomalous charge state of Fe in Mg(Fe,Cr)O4: a Mossbauer study. Journal of Physics: Condensed Matter, 4 (39), 7937–7946. doi: 10.1088/0953-8984/4/39/009
  18. Gismelseed, A. M., Mohammed, K. A., Al-Rawas, A. D., Yousif, A. A., Widatallah, H. M., Elzain, M. E. (2014). Structural and magnetic studies of the Zn-substituted magnesium ferrite chromate. Hyperfine Interactions, 226 (1-3), 57–63. doi: 10.1007/s10751-013-1003-6
  19. Osborne, M. D., Fleet, M. E., Michael Bancroft, G. (1981). Fe2+ -Fe3+ ordering in chromite and Cr-bearing spinels. Contributions to Mineralogy and Petrology, 77 (3), 251–255. doi: 10.1007/bf00373539
  20. Maksimochkin, V. I., Gubaidullin, R. R., Gareeva, M. Y. (2013). Magnetic properties and structure of Fe2 − x Mg x CrO4 chromites. Moscow University Physics Bulletin, 68 (3), 241–248. doi: 10.3103/s0027134913030077
  21. Kopayev, A. V., Mokljak, V. V., Gasyuk, I. M., Yaremiy, I. P., Kozub, V. V. (2015). Structure Ordering in Mg-Zn Ferrite Nanopowders Obtained by the Method of Sol-Gel Autocombustion. Solid State Phenomena, 230, 114–119. doi: 10.4028/www.scientific.net/ssp.230.114
  22. Pua, P.; Syushe, Zh. P. (Ed.) (1972). Sootnoshenie mezhdu rasstoyaniyami anion-kation i parametrami reshetki. Himiya tverdogo tela. Moscow: Metallurgiya, 49–75.
  23. Reznickiy, L. A. (1984). Energii predpochteniya kationov i obrazovanie tverdyh rastvorov shpineley. Neorganicheskie materialy, 20 (11), 1867–1869.
  24. Erastova, A. P., Saksonov, Yu. G. (1963). Opredelenie kationnogo raspredeleniya i kislorodnogo parametra v sisteme MgFe2-yCryO4. Ferrity i beskontaktnye elementy. Minsk: Izd-vo ak. nauk BSSR, 163–175.
  25. Shpinel', V. S. (1969). Rezonans gamma-luchey v kristallah. Moscow: Nauka, 408.
  26. Gol'danskiy, V. I. (1970). Himicheskie primeneniya messbauerovskoy spektroskopii. Moscow: Mir, 502.
  27. Gilleo, M. A. (1980). Ferromagnetic insulators: garnets. Vol. 2. Chap. 1. Handbook of Ferromagnetic Materials. North-Holland, 1–53. doi: 10.1016/s1574-9304(05)80102-6
  28. Ostafyichuk, B. K., Hasiuk, I. M., Mokliak, V. V., Deputat, B. Ya., Yaremiy, I. P. (2010). Rozuporiadkuvannia struktury tverdykh rozchyniv lityi-zaliznoi ta lityi-aliuminyiovoi shpineli. Metallofizika i noveyshie tekhnologii, 32 (2), 209–224.
  29. Luсas, A. V., Yaremiy, I. P., Matkivskyi, M. P. (2015). Peculiar properties of crystal-chemical stucture of spinels of the system Mg(FexCr2-x)O4 obtained through the hydroxide coprecipitation method and solid state technology. Eastern-European Journal of Enterprise Technologies, 5 (6 (77)), 57–63. doi: 10.15587/1729-4061.2015.51058

Downloads

Published

2017-10-30

How to Cite

Luсas A., Moklyak, V., Yaremiy, I., Yaremiy, S., Gasyuk, I., & Matkivskyi, M. (2017). Mössbauer studies of spinellides of Mg(FeXCr2-X)O4 system obtained by the hydroxide co-precipitation method. Eastern-European Journal of Enterprise Technologies, 5(6 (89), 56–63. https://doi.org/10.15587/1729-4061.2017.112271

Issue

Section

Technology organic and inorganic substances