Decontamination of methyl parathion in activated nucleophilic systems based on carbamide peroxisolvate

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.119495

Keywords:

nucleophilic substitution, hydrogen peroxide, carbamide peroxysolvate, methyl parathion, peroxoborate, peroxocarbonate.

Abstract

The study has specified the nucleophilic decomposition of meth­yl parathion (O,O-dimethyl-O-(4-nitrophenyl) thiophosphate) by an НОО– anion generated from carbamide peroxysolvate in the presence of ammonium bicarbonate and boric acid. The revealed effect is the supernucleophilic reactivity of the diatheroxoborate anion ( ) ( )− 2 2 B OH OOH , which is two orders of magnitude higher than the analogous value for the НОО– anion. The tests have shown the principle possibility of using solid sources of hydrogen peroxide in degassing nucleophilic systems.

The value of the α-effect ( − − HOOHOk k ) has been determined, which indicates an abnormally high reactivity of the HOO– anion in the decomposition of toxic phosphorus compounds.

The obtained data show that the activation of hydrogen perox­ide with ammonium bicarbonate and boric acid can be considered as a new approach to the creation of soft ecological systems of decon­tamination of nucleophilic and oxidative effects.

The results obtained can be used to develop long-term decon­tamination systems for decomposing highly toxic pesticides and active pharmaceutical ingredients of organophosphorus nature. Such systems can be used to eliminate the consequences of contamination with components of chemical weapons, toxic pesticides, and toxic active pharmaceutical ingredients.

Author Biographies

Lubov Vakhitova, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD, Senior Researcher

Volodymyr Bessarabov, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

Nadezhda Taran, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD, Senior Researcher

Galina Kuzmina, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

Glib Zagoriy, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

Doctor of Pharmaceutical Sciences, Professor

Olga Baula, Kyiv National University of Technologies and Design Nemyrovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

Anatolii Popov, L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

Doctor of Chemical Sciences, Professor

References

  1. Liu, G., Tang, Q., Zhou, Y., Cao, X., Zhao, J., Zhu, D. (2017). Photo-induced phosphate released from organic phosphorus degradation in deionized and natural water. Photochemical & Photobiological Sciences, 16 (4), 467–475. doi: 10.1039/c6pp00313c
  2. Martin-Reina, J., Duarte, J. A., Cerrillos, L., Bautista, J. D., Soliman, M. M. (2017). Insecticide Reproductive Toxicity Profile: Organophosphate, Carbamate and Pyrethroids. Journal of Toxins, 4 (1), 01–07. doi: 10.13188/2328-1723.1000019
  3. Mezhdunarodnyy kodeks povedeniya v oblasti raspredeleniya i ispol'zovaniya pestitsidov. Rukovodstvo po kontrolyu za kachestvom pestitsidov (2012). WHO, 52. Available at: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/Quality_2011_RUS.pdf
  4. Rotterdamskaya konventsiya o protsedure predvaritel'nogo obosnovannogo soglasiya v otnoshenii otdel'nyh opasnyh himicheskih veshchestv i pestitsidov v mezhdunarodnoy torgovle. Available at: https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.33/2013/mtg1/RC_Convention_Russian.pdf
  5. Reglament No. 304/2003 Evropeyskogo Parlamenta i Soveta ES v otnoshenii eksporta i importa opasnyh himikatov. Verkhovna Rada Ukrainy. Available at: http://zakon3.rada.gov.ua/laws/show/994_b22
  6. Affam, A. C., Chaudhuri, M., M. Kutty, S. R. (2012). Fenton Treatment of Chlorpyrifos, Cypermethrin and Chlorothalonil Pesticides in Aqueous Solution. Journal of Environmental Science and Technology, 5 (6), 407–418. doi: 10.3923/jest.2012.407.418
  7. Sahu, C., Das, A. K. (2017). Solvolysis of organophosphorus pesticide parathion with simple and α nucleophiles: a theoretical study. Journal of Chemical Sciences, 129 (8), 1301–1317. doi: 10.1007/s12039-017-1322-2
  8. Singh, B., Prasad, G. K., Pandey, K. S., Danikhel, R. K., Vijayaraghavan, R. (2010). Decontamination of Chemical Warfare Agents. Defence Science Journal, 60 (4), 428–441.
  9. Blinov, V., Volchek, K., Kuang, W., Brown, C. E., Bhalerao, A. (2013). Two-Stage Decontamination of Organophosphorus Compounds on Sensitive Equipment Materials. Industrial & Engineering Chemistry Research, 52 (4), 1405–1413. doi: 10.1021/ie302012y
  10. Mandal, D., Mondal, B., Das, A. K. (2012). Nucleophilic Degradation of Fenitrothion Insecticide and Performance of Nucleophiles: A Computational Study. The Journal of Physical Chemistry A, 116 (10), 2536–2546. doi: 10.1021/jp2100057
  11. Bessarabov, V., Vakhitova, L., Kuzmina, G., Zagoriy, G., Baula, O. (2017). Development of micellar system for the decontamination of organophosphorus compounds to clean technological equipment. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 42–49. doi: 10.15587/1729-4061.2017.92034
  12. Vahitova, L. N., Matvienko, K. V., Taran, N. A., Rybak, V. V., Burdina, Ya. F. (2014). Kineticheskaya model' reaktsiy gidroliza i pergidroliza paraoksona v mikroemul'sii. Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu. Ser.: Khimiya i khimichna tekhnolohiya, 2, 121–127.
  13. Vol'nov, I. I., Antonovskiy, V. L. (1985). Peroksidnye proizvodnye i addukty karbonatov. Moscow: Nauka, 180.
  14. Babko, A. K., Pyatnitskiy, I. V. (1968). Kolichestvenniy analiz. Moscow: Vysshaya shkola, 495.
  15. Savelova, V. A., Sadovskiy, Yu. S., Solomoychenko, T. N., Prokop'eva, T. M., Kosmynin, V. V., Piskunova, Zh. P. et. al. (2008). Nukleofil'naya reaktsionnaya sposobnost' peroksigidrokarbonat- i peroksokarbonat-ionov po otnosheniyu k 4-nitrofenildietilfosfonatu. Teoret. i eksperim. him., 44 (2), 98–104.
  16. Vahitova, L. N., Lahtarenko, N. V., Popov, A. F. (2015). Kinetika okisleniya metilfenilsul'fida peroksoborat-anionami. Teoret. i eksperim. him., 51 (5), 297–302.
  17. Lobachev, V. L., Dyatlenko, L. M., Zimtseva, G. P. (2010). Kinetika kataliziruemogo borat-anionami okisleniya dietilsul'fida peroksidom vodoroda v srede i-PrOH – H2O. Teoret. i eksperim. him., 46 (3), 177–183.
  18. Popov, A. F. (2008). Design of green microorganized systems for decontamination of ecotoxicants. Pure and Applied Chemistry, 80 (7). doi: 10.1351/pac200880071381
  19. Bae, A.-R., Lee, J., Um, I.-H. (2013). Decomposition of Paraoxon and Parathion by Amines, HOO-and OH-Ions: Reaction Mechanism and Origin of the α-Effect. Bulletin of the Korean Chemical Society, 34 (1), 201–206. doi: 10.5012/bkcs.2013.34.1.201
  20. Vahitova, L. N., Matvienko, K. V., Taran, N. A., Lahtarenko, N. V., Popov, A. F. (2011). Nukleofil'no-okislitel'nye sistemy na osnove peroksida vodoroda dlya razlozheniya substratov- ekotoksikantov. Zhurn. organ. him., 47 (7), 951–960.
  21. Sadovskiy, Yu. S., Solomoychenko, T. N., Prokop'eva, T. M., Piskunova, Zh. P., Razumova, N. G., Panchenko, B. V., Popov, A. F. (2012). Reaktsionnaya sposobnost' sistemy H2O2/B(OH)3/HO- v protsessah razlozheniya 4-nitrofenilovyh efirov dietilfosfonovoy i dietilfosfornoy kislot. Teoret. i eksperim. him., 48 (3), 152–158.

Downloads

Published

2017-12-25

How to Cite

Vakhitova, L., Bessarabov, V., Taran, N., Kuzmina, G., Zagoriy, G., Baula, O., & Popov, A. (2017). Decontamination of methyl parathion in activated nucleophilic systems based on carbamide peroxisolvate. Eastern-European Journal of Enterprise Technologies, 6(10 (90), 31–37. https://doi.org/10.15587/1729-4061.2017.119495