A study of environmentally safe obtaining of molybdenum-based alloying material by solid phase extraction

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.119498

Keywords:

molybdenum concentrate, thermal carbon extraction, metallization, sublimation, phase analysis, microstructure, resource sparing

Abstract

The study has determined an increase of the degree of thermal carbon extraction of the molybdenum oxide concentrate from 11 % to 97 % with an increase in the processing temperature from 873 K to 1373 K, respectively. A further rise in temperature to 1473 K led to a reduction in the degree of recovery to 89 %. The recovery products after treatment at 873–1073 K mostly consisted of MoO2 with some Mo and Mo2C manifestations. Treatment at 1223–1473 K provided a predominance of Mo and Mo2C as to the oxide component. The microstructure of the recovery products was spongy and disordered with varying degrees of sintering, depending on the processing temperature. The alloying of R6M5 steel with the new molybdenum material in experimental industrial conditions provided an increase in the Mo uptake rate from 88.9 % to 95.0 % compared with the standard technology. Improvement of environmental safety is achieved by replacing carbon monoxide and aluminothermic melting of ferroalloy production of Mo with the latest methods of powder metallurgy.

Author Biographies

Stanislav Hryhoriev, Zaporizhzhia National University Zhukovskoho str., 66, Zaporizhzhia, Ukraine, 69600

Doctor of Technical Sciences, Professor

Department of business administration and international management

Artem Petryshchev, Zaporizhzhya National Technical University Zhukovskoho str., 64, Zaporizhzhya, Ukraine, 69063

PhD

Department of labour and environment protection

Kristina Krupey, Zaporizhzhia National University Zhukovskoho str., 66, Zaporizhzhia, Ukraine, 69600

PhD, Assistant

Department of General and Applied Ecology and Zoology

Andrey Andreev, Zaporizhzhia National University Zhukovskoho str., 66, Zaporizhzhia, Ukraine, 69600

PhD, Associate Professor

Department of physics and methods of teaching

Alexander Katschan, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

Senior Lecturer

Department of software development

Dmytro Stepanov, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

Senior Lecturer

Department of technology of mechanical engineering

Yevheniia Manidina, Zaporizhzhia State Engineering Academy Soborny ave., 226, Zaporizhzhia, Ukraine, 69606

PhD, Associate Professor

Department of Applied Ecology and Labor Protection

Vadim Ryzhkov, Zaporizhzhia State Engineering Academy Soborny ave., 226, Zaporizhzhia, Ukraine, 69606

PhD, Associate Professor

Department of Applied Ecology and Labor Protection

Nataliia Berenda, Zaporizhzhia State Engineering Academy Soborny ave., 226, Zaporizhzhia, Ukraine, 69606

PhD, Associate Professor

Department of Applied Ecology and Labor Protection

Anton Matiukhin, Zaporizhzhia National Technical University Zhukovskoho str., 64, Zaporizhzhia, Ukraine, 69063

PhD, Associate Professor

Department of Metal Working 

References

  1. Belokon, K. V., Belokon, Y. A., Kozhemyakin, G. B., Matukhno, E. V. (2016). Еnvironmental assessment of the intermetallic catalysts utilization efficiency for deactivation of the pollutants emitted by electrode production enterprises. Scientific bulletin of National mining university, Scientific and technical journal, 3, 87–94.
  2. Leytman, M. S. (2009). Poroshkovye legiruyushchie materialy iz tugoplavkih metallov. Stal', 1, 56–57.
  3. Hryhoriev, S., Petryshchev, A., Shyshkanova, G., Yakimtsov, Y., Zhuravel, S., Yamshinskij, M. et. al. (2017). Study into properties of the resource­saving chromium­containing briquetted alloying additive from ore raw materials. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 38–43. doi: 10.15587/1729-4061.2017.108191
  4. Hryhoriev, S., Petryshchev, A., Kovalyov, A., Shyshkanova, G., Yamshinskij, M., Fedorov, G. et. al. (2017). Research into specifics of recycling the scale of nickel­molybdenum containing precision alloys by the method of hydrogen reduction. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 34–38. doi: 10.15587/1729-4061.2017.109738
  5. Slutskiy, A. G., Kalinichenko, A. S., Sheynert, V. A. (2012). Issledovanie protsessa polucheniya molibdensoderzhashchey ligatury metodom vnepechnoy metallurgii. Nauka i tekhnika, 4, 13–17.
  6. Tarasov, A. V. (2011). Mineral'noe syr'e, novye tekhnologii i razvitie proizvodstva tugoplavkih redkih metallov v Rossii i stranah SNG. Tsvetnye metally, 6, 57–66.
  7. Leont’ev, L. I., Grigorovich, K. V., Kostina, M. V. (2016). The development of new metallurgical materials and technologies. Part 1. Steel in Translation, 46 (1), 6–15. doi: 10.3103/s096709121601006x
  8. Dang, J., Zhang, G.-H., Chou, K.-C., Reddy, R. G., He, Y., Sun, Y. (2013). Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. International Journal of Refractory Metals and Hard Materials, 41, 216–223. doi: 10.1016/j.ijrmhm.2013.04.002
  9. Wang, L., Zhang, G.-H., Chou, K.-C. (2016). Synthesis of nanocrystalline molybdenum powder by hydrogen reduction of industrial grade MoO3. International Journal of Refractory Metals and Hard Materials, 59, 100–104. doi: 10.1016/j.ijrmhm.2016.06.001
  10. Gurevich, Yu. G., Avsyannikov, V. E. (2013). Termodinamicheskiy analiz reaktsiy sovmestnogo vosstanovleniya molibdena i zheleza iz ih oksidov. Vestnik Kurganskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki, 29, 73–74.
  11. Zhu, H., Li, Z., Yang, H., Luo, L. (2013). Carbothermic Reduction of MoO3 for Direct Alloying Process. Journal of Iron and Steel Research, International, 20 (10), 51–56. doi: 10.1016/s1006-706x(13)60176-4
  12. Donskih, D. K. (2008). Razrabotka i osvoenie tekhnologii pererabotki othodov vol'frama i molibdena. Stal', 8, 73.
  13. Leytman, M. S. (2009). Poroshkovye legiruyushchie materialy iz tugoplavkih metallov. Stal', 1, 56–57.
  14. Torabi, O., Golabgir, M. H., Tajizadegan, H., Torabi, H. (2014). A study on mechanochemical behavior of MoO3–Mg–C to synthesize molybdenum carbide. International Journal of Refractory Metals and Hard Materials, 47, 18–24. doi: 10.1016/j.ijrmhm.2014.06.001
  15. Novoselova, L. Y. (2014). Mo and MoO 3 powders: Structure and resistance to CO. Journal of Alloys and Compounds, 615, 784–791. doi: 10.1016/j.jallcom.2014.07.006
  16. Aydinyan, S. V. (2011). Vliyanie razbavleniya iskhodnoy shihty na teplovoy rezhim vosstanovleniya MoO3 smes'yu Mg+C. Himicheskiy zhurnal Armenii, 64 (4), 465–476.
  17. Long, T. V., Palacios, J., Sanches, M., Miki, T., Sasaki, Y., Hino, M. (2012). Recovery of Molybdenum from Copper Slags. ISIJ International, 52 (7), 1211–1216. doi: 10.2355/isijinternational.52.1211
  18. Long, T. V., Miki, T., Sasaki, Y., Hino, M. (2012). Recovery of Molybdenum from Spent Lubricant. ISIJ International, 52 (7), 1217–1224. doi: 10.2355/isijinternational.52.1217
  19. Ryabchikov, I. V., Belov, B. F., Mizin, V. G. (2014). Reactions of metal oxides with carbon. Steel in Translation, 44 (5), 368–373. doi: 10.3103/s0967091214050118
  20. Badenikov, A. V., Badenikov, V. Ya., Bal'chugov, A. V. (2015). Kinetika plazmennogo vosstanovleniya trekhokisi molibdena. Vestnik Angarskogo gosudarstvennogo tekhnicheskogo universiteta, 9, 8–10.
  21. Grigor’ev, S. M., Petrishchev, A. S. (2015). Refining metallized molybdenum concentrate by means of a low-temperature plasma-forming mixture. Steel in Translation, 45 (12), 954–958. doi: 10.3103/s0967091215120049

Downloads

Published

2017-12-25

How to Cite

Hryhoriev, S., Petryshchev, A., Krupey, K., Andreev, A., Katschan, A., Stepanov, D., Manidina, Y., Ryzhkov, V., Berenda, N., & Matiukhin, A. (2017). A study of environmentally safe obtaining of molybdenum-based alloying material by solid phase extraction. Eastern-European Journal of Enterprise Technologies, 6(12 (90), 35–40. https://doi.org/10.15587/1729-4061.2017.119498

Issue

Section

Materials Science