A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali­activated slag cement and concrete

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.119624

Keywords:

alkali activated cement, compressive strength, concrete, kaolin, metakaolin, freeze/thaw resistance

Abstract

The influence of the metakaolin and kaolin additives on the formation and properties of the alkali-activated slag cements and concretes was studied.

The influence of the metakaolin and kaolin additives on macro- and microstructure formation of the cements and concretes was studied.

A conclusion was drawn that the processes of microstructure formation of the cement stone with the additive flow in a similar sequence but with different intensity. A conclusion was drawn that the addition of the kaolin instead of metakaolin affected as follows: 2.5–10 % by mass reduced the value of NCP by 9.5–8.7 %, respectively; 2.5–5 % by mass did not affect setting times, but with increase up to 10 % by mass the initial setting time was shorter (from 48 min to 40 min); 2.5–5 % by mass did not affect compressive strength at all stages of hardening, but with increase up to 10 % by mass reduced strength characteristics of the cement-sand specimens (from 57.0 MPa to 49.0 MPa).

In case of the addition of 5 % kaolin by mass, an optimal macrostructure of the concrete is formed in which the quantities of the ''conditionally'' closed pores are by 17.7 % higher compared to those of the concretes with the same quantities of the metakaolin. This resulted in the higher freeze/thaw resistance of the concrete (from F400 up to F500). Based on the comparison of properties and structure of the cement and concrete containing the kaolin and metakaolin additives, a possibility to substitute metakaolin by kaolin as a correcting additive was established.

Author Biographies

Pavel Krivenko, Kyiv National University of Construction and Architecture Povitroflotskiy ave., 31, Kyiv, Ukraine, 03037

Doctor of Technical Sciences, Professor

Scientific Research Institute for Binders and Materials

Oleg Petropavlovskyi, Kyiv National University of Construction and Architecture Povitroflotskiy ave., 31, Kyiv, Ukraine, 03037

PhD, Senior researcher

Scientific Research Institute for Binders and Materials

Oleksandr Kovalchuk, Kyiv National University of Construction and Architecture Povitroflotskiy ave., 31, Kyiv, Ukraine, 03037

PhD, Senior researcher

Scientific Research Institute for Binders and Materials

References

  1. Shi, C., Jiménez, A. F., Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41 (7), 750–763. doi: 10.1016/j.cemconres.2011.03.016
  2. Gluhovskiy, V. D. (1959). Gruntosilikaty. Kyiv: Gosstroyizdat, 127.
  3. Provis, J. L., Duxson, P., Kavalerova, E., Krivenko, P. V., Pan, Z., Puertas, F., van Deventer, J. S. J. (2013). Historical Aspects and Overview. RILEM State-of-the-Art Reports, 11–57. doi: 10.1007/978-94-007-7672-2_2
  4. Provis, J. L., Brice, D. G., Buchwald, A., Duxson, P., Kavalerova, E., Krivenko, P. V. et. al. (2013). Demonstration Projects and Applications in Building and Civil Infrastructure. RILEM State-of-the-Art Reports, 309–338. doi: 10.1007/978-94-007-7672-2_11
  5. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernández-Jiménez, A. (2014). A review on alkaline activation: new analytical perspectives. Materiales de Construcción, 64 (315), e022. doi: 10.3989/mc.2014.00314
  6. Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 19–47. doi: 10.1533/9781782422884.1.19
  7. Gluhovskiy, V. D., Pahomov, V. A. (1978). Shlakoshchelochnye tsementy i betony. Kyiv: Budіvel'nik, 184.
  8. Sedira, N., Castro-Gomes, J., Kastiukas, G., Zhou, X., Vargas, А. (2017). A review on mineral waste for chemical-activated binders: mineralogical and chemical characteristics. Mining Science, 24, 29–58.
  9. Chernyavskiy, V. L. (2008). Adaptatsiya abioticheskih sistem: beton i zhelezobeton. Dnepropetrovsk: Dnepropetr. nats. un-t zh.-d. transp., 415.
  10. Dvorkin, L. Y., Lushnikova, N. V., Runova, R. F., Troian, V. V. (2007). Metakaolin v budivelnykh rozchynakh i betonakh. Kyiv: KNUBiA, 215.
  11. Yip, C. K., Lukey, G. C., van Deventer, J. S. J. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35 (9), 1688–1697. doi: 10.1016/j.cemconres.2004.10.042
  12. Puertas, F., Palacios, M., Provis, J. L. (2013). Admixtures. RILEM State-of-the-Art Reports, 145–156. doi: 10.1007/978-94-007-7672-2_6
  13. Krivenko, P. V., Gelevera, A. G., Petropavlovsky, O. N., Kavalerova, O. N. (2005). Role of metakaolin additive on structure formation in the contact zone “cement-alkali-susceptible aggregate”. 2nd International Conference on Non-Traditional Cement & Concrete. Brno, Czech Republic: Brno University of Technology & ZPSV AS.
  14. Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., Macphee, D. E. (2011). Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research, 41 (9), 923–931. doi: 10.1016/j.cemconres.2011.05.006
  15. Li, C., Sun, H., Li, L. (2010). A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cement and Concrete Research, 40 (9), 1341–1349. doi: 10.1016/j.cemconres.2010.03.020
  16. Puertas, F., Fernández-Jiménez, A., Blanco-Varela, M. T. (2004). Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cement and Concrete Research, 34 (1), 139–148. doi: 10.1016/s0008-8846(03)00254-0
  17. Bernal, S. A., Mejía de Gutiérrez, R., Provis, J. L. (2012). Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Construction and Building Materials, 33, 99–108. doi: 10.1016/j.conbuildmat.2012.01.017
  18. Myers, R. J., Bernal, S. A., San Nicolas, R., Provis, J. L. (2013). Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir, 29 (17), 5294–5306. doi: 10.1021/la4000473
  19. Krivenko, P. V. (1984). Zakonomernosti formirovaniya struktury i svoystv tsementnogo kamnya shlakoshchelochnyh vyazhushchih. Tezisy dokladov P Vsesoyuznoy nauchno-prakticheskoy konferentsii. Kyiv.
  20. Gluhovskiy, V. D., R. S. Zhukova, N. N. Kruglitskiy (1972). Issledovanie produktov vzaimodeystviya glinistyh mineralov s gidroksidom kaliya. Neorganicheskie materialy, 8 (11).
  21. Lothenbach, B., Durdziñski, P., De Weerdt, K. (2015). Thermogravimetric analysis. A Practical Guide to Microstructural Analysis of Cementitious Materials, 177–212. doi: 10.1201/b19074-6
  22. Zhdanov, S. P. (1990). Synthetic zeolites. CRC Press, 679.
  23. Bernal, S. A., Provis, J. L., Walkley, B., San Nicolas, R., Gehman, J. D., Brice, D. G. et. al. (2013). Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cement and Concrete Research, 53, 127–144. doi: 10.1016/j.cemconres.2013.06.007

Downloads

Published

2018-02-22

How to Cite

Krivenko, P., Petropavlovskyi, O., & Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali­activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 1(6 (91), 33–39. https://doi.org/10.15587/1729-4061.2018.119624

Issue

Section

Technology organic and inorganic substances