Thin­walled structures: analysis of the stressed­strained state and parameter validation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.120547

Keywords:

thin-walled machine building structure, stressed-strained state, response surface, innovative product

Abstract

The approach is developed to substantiate technical solutions for thin-walled machine building structures. It implies that the problem is considered in the space of generalized parameters. These parameters combine design and technological factors, as well as operating conditions. In addition, we introduce criterial and constraint dependences to a given space. In the generated uniform parametric space an approximated response surface is constructed, which stretches over a discrete set of solutions to analysis problems. For example, based on the results of examining the stresses-strained state, maximum stresses or displacements, mass or other controlled magnitudes are determined. They are unambiguously computed (a point in a common parametric space) for a specific set of variable generalized parameters. Having a cloud of such points, it is possible to construct an approximated response surface. Approximation constraints are also built on it. Next, by using the methods of nonlinear programming, we search on the set of permissible values for the minimum (or maximum) of quality function of the examined structure.

Specifically, for the thin-walled structures, important parameters are the shape and dimensions in a plan, as well as thickness of individual elements. Using a number of structures as examples, authors of present work performed analysis of influence of these parameters on the strength of designed structures.

Author Biographies

Mykola Tkachuk, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Science, Professor, Head of Department

Department of Theory and Computer-Aided Design of Mechanisms and Machines

Maryna Bondarenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Junior Research assistant

Department of Theory and Computer-Aided Design of Mechanisms and Machines 

Andriy Grabovskiy, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Theory and Computer-Aided Design of Mechanisms and Machines 

Roman Sheychenko, JSC "Science Engineering Center UK "RailTransHolding" Volhohradska str., 24, Mariupol, Ukraine, 87502

Сhief designer of the tank-car project 

Roman Graborov, JSC "Science Engineering Center UK "RailTransHolding" Volhohradska str., 24, Mariupol, Ukraine, 87502

Head of group of technical settlement

Vitaliy Posohov, National academy of the National guards of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkiv, Ukraine, 61001

Senior Lecturer

Department of Repair and operation of cars and military vehicles

Eugene Lunyov, JSK "ARGUS-Personnel" Sichovyh striltsiv str., 3, Kyiv, Ukraine, 04053

Manager

Anatoliy Nabokov, Dnipropetrovsk Pedagogical College Polia ave., 83, Dnipro, Ukraine, 49000

First deputy director

Anton Vasiliev, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of Theory and Computer-Aided Design of Mechanisms and Machines 

References

  1. Neittaanmäki, P., Repin, S., Tuovinen, T. (Eds.) (2016). Mathematical Modeling and Optimization of Complex Structures. Switzerland: Springer, 328. doi: 10.1007/978-3-319-23564-6
  2. Zarchi, M., Attaran, B. (2017). Performance improvement of an active vibration absorber subsystem for an aircraft model using a bees algorithm based on multi-objective intelligent optimization. Engineering Optimization, 49 (11), 1905–1921. doi: 10.1080/0305215x.2017.1278757
  3. Serpik, I. N., Mironenko, I. V., Averchenkov, V. I. (2016). Algorithm for Evolutionary Optimization of Reinforced Concrete Frames Subject to Nonlinear Material Deformation. Procedia Engineering, 150, 1311–1316. doi: 10.1016/j.proeng.2016.07.304
  4. Kuczek, T. (2015). Application of manufacturing constraints to structural optimization of thin-walled structures. Engineering Optimization, 48 (2), 351–360. doi: 10.1080/0305215x.2015.1017350
  5. Chepurnoy, A. D., Sheychenko, R. I., Graborov, R. V., Tkachuk, N. A., Bondarenko, M. A. (2017). Innovatsionnyy vagon-tsisterna dlya perevozki legkovesnyh himicheskih produktov modeli 15-6899. Podvizhnoy sostav XXI veka: idei, trebovaniya, proekty: materialy XII Mezhdnarodnoy nauchno-tekhnicheskoy konferentsii. Sankt-Peterburg: FGBOU VO PGUPS, 32–33.
  6. Marchenko, A., Chepurnoy, A., Senko, V., Makeev, S., Litvinenko, O., Sheychenko, R. et. al. (2017). Analysis and synthesis of complex spatial thin-walled structures. Proceedings of the Institute of Vehicles. Institute of Vehicles of Warsaw University of Technology, 1, 17–29.
  7. Nocedal J., Wright S. (2006). Numerical Optimization. New York: Springer-Verlag, 664.
  8. Chinneck, J. W. Practical optimization: a gentle introduction. Available at: http://www.sce.carleton.ca/faculty/chinneck/po.html
  9. Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z. (2013). The Finite Element Method: Its Basis and Fundamentals. Oxford: Butterworth-Heinemann, 756.
  10. Sachsenberg, B., Schittkowski, K. (2015). A combined SQP–IPM algorithm for solving large-scale nonlinear optimization problems. Optimization Letters, 9 (7), 1271–1282. doi: 10.1007/s11590-015-0863-x
  11. Byrd, R. H., Chin, G. M., Nocedal, J., Wu, Y. (2012). Sample size selection in optimization methods for machine learning. Mathematical Programming, 134 (1), 127–155. doi: 10.1007/s10107-012-0572-5
  12. Tanchenko, A. Yu., Tkachuk, N. A., Artemov, I. V., Litvinenko, A. V. (2013). Dinamicheskie i prochnostnye harakteristiki tonkostennyh elementov mashinostroitel'nyh konstruktsiy pri umen'shenii tolshchiny v protsesse ekspluatatsii. Aktual'nye voprosy mashinovedeniya, 2, 210–213.
  13. Karmanov, V. G. (2008). Matematicheskoe programmirovanie. Moscow: Fizmatlit, 263.
  14. Vasidzu, K. (1987). Variatsionnye metody v teorii uprugosti i plastichnosti. Moscow: Mir, 542.

Downloads

Published

2018-01-11

How to Cite

Tkachuk, M., Bondarenko, M., Grabovskiy, A., Sheychenko, R., Graborov, R., Posohov, V., Lunyov, E., Nabokov, A., & Vasiliev, A. (2018). Thin­walled structures: analysis of the stressed­strained state and parameter validation. Eastern-European Journal of Enterprise Technologies, 1(7 (91), 18–29. https://doi.org/10.15587/1729-4061.2018.120547

Issue

Section

Applied mechanics