The effect of external magnetic flux field in the QTS weldment on the change of fatigue crack propagation behaviors

Sugiarto Sugiarto, Rudy Soenoko, Anindito Purnowidodo, Yudy Surya Irawan

Abstract


This investigation discusses fatigue crack propagation behaviors on the welded joint of Hot Rolled Quench Tempered Steel (QTS) in which during welding process the fusion zone of the joint was subjected to magnetic flux field. The QTS weldability is not really excellent due to the change of microstructure into tempered martensite, and the possibility of microcrack defect on the welding area is still high. The purpose of the investigation is to know the effect of External Magnetic Flux (EMF) field during welding process on fatigue crack propagation behaviors. The external magnetic flux is applied transversely from two sides of the workpiece using a DC powered solenoid of 0, 3, 6, 9 and 15 Amperes. The effect of EMF is more sensitive to decrease the tensile strength and the fatigue crack propagation rate of the weld area. The result shows that the electromagnetic force on the weld pool increases. It causes the liquid metal circulation rate to increase and welding defects to decrease. This indicates that the liquid metal and filler metal are easily mixed, the release of gas from liquid metal to surface before solidification easily happens. The finding shows that the effect of EMF is more efficient.


Keywords


crack propagation rate; crack resistance; external magnetic flux; martempering; martensite; QTS; weldability

Full Text:

PDF

References


Kou, S. (2002). Welding Metalurgy. Wiley-interscience, New Jersey.

Messler, R. W. (2004). Principles of Welding. John Wiley & Sons. doi: 10.1002/9783527617487

Béres, L., Balogh, A., Irmer, W. (2001). Welding of Martensitic Creep-Resistant Steels. Welding Research, 191-s–195-s.

Vuherer, T., Dunđer, M., Milović, L., Zrilić, M., Samardžić, I. (2013). Microstructural Investigation of the Heat-Affected Zone of Simulated Welded Joint of P91 Steel. Metalurgija, 52 (3), 317–320.

Khan, Md. I. (2007). Welding Science and Technology. New Delhi: New Age International (P) Ltd., 278.

Chatterjee, S., Doley, B. (2014). Crack Propagation and Fracture Analysis In Engineering Structure By Generative Part Structural Analysis. International Journal Of Current Research, 6 (06), 7032–7037.

Iyer, A. H. S., Stiller, K., Leijon, G., Andersson-Östling, H. C. M., Hörnqvist Colliander, M. (2017). Influence of dwell time on fatigue crack propagation in Alloy 718 laser welds. Materials Science and Engineering: A, 704, 440–447. doi: 10.1016/j.msea.2017.08.049

Zhang, Y., Chen, G., Chen, B., Wang, J., Zhou, C. (2017). Experimental study of hot cracking at circular welding joints of 42CrMo steel. Optics & Laser Technology, 97, 327–334. doi: 10.1016/j.optlastec.2017.07.018

Marya, M., Gayden, X. (2005). Development of Requirements For Resistance Spot Welding Dual-Phase (DP600) Steels Part 1: The Causes Of Interfacial Fracture. Welding Research, 172s–182s.

Joaquin, A., Adrian, N. A. E., Jiang, C. (2007). Reducing shrinkage voids in resistance spot welds. Welding Research, 24–27.

De Herreran, N. (2003). Computer Calculation of Fusion Zone Geometry Considering Fluid Flow and heat Transfer During Fusion Welding. Welding J. The Univ. of Texas at El Paso.

Shen, Q., Li, Y., Lin, Z., Chen, G. (2011). Impact of External Magnetic Field on Weld Quality of Resistance Spot Welding. Journal of Manufacturing Science and Engineering, 133 (5), 051001. doi: 10.1115/1.4004794

Li, P. (2008). The Present Situation And Development Trend Of The Automobile Engine Piston Design. Autom. Tech. Mat., 1, 5–8.

Sugiarto, Purnowidodo, A., Sonief, A., Soenoko, R., Irawan, Y. S. (2016). The Use of Magnetic Flux to The Welding of Hot Roll Quench Tempered Steel. ARPN Journal of Engineering and Applied Sciences, 11, 1061–1064.

Kostov, I., Andonov, A. (2005). Modelling of Magnetic Fields Generated by Cone Shape Coils for Welding with Electromagnetic Mixing. Journal of the University of Chemical Technology and Metallurgy, 40 (3), 261–264.

Wang, Z., Nakamura, T. (2004). Simulations of crack propagation in elastic–plastic graded materials. Mechanics of Materials, 36 (7), 601–622. doi: 10.1016/s0167-6636(03)00079-6

Sadananda, K., Solanki, K. N., Vasudevan, A. K. (2017). Subcritical crack growth and crack tip driving forces in relation to material resistance. Corrosion Reviews, 35 (4-5). doi: 10.1515/corrrev-2017-0034

Gürses, E., Miehe, C. (2009). A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Computer Methods in Applied Mechanics and Engineering, 198 (15-16), 1413–1428. doi: 10.1016/j.cma.2008.12.028

Curtin, W. A., Deshpande, V. S., Needleman, A., Van der Giessen, E., Wallin, M. (2010). Hybrid discrete dislocation models for fatigue crack growth. International Journal of Fatigue, 32 (9), 1511–1520. doi: 10.1016/j.ijfatigue.2009.10.015

Albedah, A., Khan, S. M. A., Benyahia, F., Bachir Bouiadjra, B. (2016). Effect of load amplitude change on the fatigue life of cracked Al plate repaired with composite patch. International Journal of Fatigue, 88, 1–9. doi: 10.1016/j.ijfatigue.2016.03.002

Broek, D. (1982). Elementary Engineering Fracture Mechanic. Springer, 540.

Kern, M., Berger, P., Hügel, H. (2000). Magneto-Fluid Dynamics Control Of Seam Quality In CO2 Laser Beam Welding. Welding Research Supplement, 72s–78s.

Tse, H. C., Man, H. C., Yue, T. M. (1999). Effect of electric and magnetic fields on plasma control during CO2 laser welding. Optics and Lasers in Engineering, 32 (1), 55–63. doi: 10.1016/s0143-8166(99)00045-7

Dar, Y. A., Singh, C., Farooq, Y. (2011). Effects of External Magnetic Field on Welding Arc of Shielded Metal Arc Welding. Indian Journal of Applied Research, 4 (4), 200–203. doi: 10.15373/2249555x/apr2014/60

Senapati, A., Mohanty, S. brata. (2014). Effects of External Magnetic Field on Mechanical properties of a welded M.S metal through Metal Shield Arc Welding. International Journal of Engineering Trends and Technology, 10 (6), 297–303. doi: 10.14445/22315381/ijett-v10p258

Natividad, C., García, R., López, V. H., Contreras, A., Salazar, M. (2017). Metallurgical Characterization of API X65 Steel Joint Welded by MIG Welding Process with Axial Magnetic Field. Materials Research, 20 (5), 1174–1178. doi: 10.1590/1980-5373-mr-2016-0182


GOST Style Citations


Kou S. Welding Metalurgy. Wiley-interscience, New Jersey, 2002.

Messler R. W. Principles of Welding. John Wiley & Sons, 2004. doi: 10.1002/9783527617487 

Béres L., Balogh A., Irmer W. Welding of Martensitic Creep-Resistant Steels // Welding Research. 2001. P. 191-s–195-s.

Microstructural Investigation of the Heat-Affected Zone of Simulated Welded Joint of P91 Steel / Vuherer T., Dunđer M., Milović L., Zrilić M., Samardžić I. // Metalurgija. 2013. Vol. 52, Issue 3. P. 317–320.

Khan Md. I. Welding Science and Technology. New Delhi: New Age International (P) Ltd., 2007. 278 p.

Chatterjee S., Doley B. Crack Propagation and Fracture Analysis In Engineering Structure By Generative Part Structural Analysis // International Journal Of Current Research. 2014. Vol. 6, Issue 06. P. 7032–7037.

Influence of dwell time on fatigue crack propagation in Alloy 718 laser welds / Iyer A. H. S., Stiller K., Leijon G., Andersson-Östling H. C. M., Hörnqvist Colliander M. // Materials Science and Engineering: A. 2017. Vol. 704. P. 440–447. doi: 10.1016/j.msea.2017.08.049 

Experimental study of hot cracking at circular welding joints of 42CrMo steel / Zhang Y., Chen G., Chen B., Wang J., Zhou C. // Optics & Laser Technology. 2017. Vol. 97. P. 327–334. doi: 10.1016/j.optlastec.2017.07.018 

Marya M., Gayden X. Development of Requirements For Resistance Spot Welding Dual-Phase (DP600) Steels Part 1: The Causes Of Interfacial Fracture // Welding Research. 2005. P. 172s–182s.

Joaquin A., Adrian N. A. E., Jiang C. Reducing shrinkage voids in resistance spot welds // Welding Research. 2007. P. 24–27.

De Herreran N. Computer Calculation of Fusion Zone Geometry Considering Fluid Flow and heat Transfer During Fusion Welding // Welding J. The Univ. of Texas at El Paso. 2003.

Impact of External Magnetic Field on Weld Quality of Resistance Spot Welding / Shen Q., Li Y., Lin Z., Chen G. // Journal of Manufacturing Science and Engineering. 2011. Vol. 133, Issue 5. P. 051001. doi: 10.1115/1.4004794 

Li P. The Present Situation And Development Trend Of The Automobile Engine Piston Design. Autom. Tech. Mat. 2008. Vol. 1. P. 5–8.

The Use of Magnetic Flux to The Welding of Hot Roll Quench Tempered Steel / Sugiarto, Purnowidodo A., Sonief A., Soenoko R., Irawan Y. S. // ARPN Journal of Engineering and Applied Sciences. 2016. Vol. 11. P. 1061–1064.

Kostov I., Andonov A. Modelling of Magnetic Fields Generated by Cone Shape Coils for Welding with Electromagnetic Mixing // Journal of the University of Chemical Technology and Metallurgy. 2005. Vol. 40, Issue 3. P. 261–264.

Wang Z., Nakamura T. Simulations of crack propagation in elastic–plastic graded materials // Mechanics of Materials. 2004. Vol. 36, Issue 7. P. 601–622. doi: 10.1016/s0167-6636(03)00079-6 

Sadananda K., Solanki K. N., Vasudevan A. K. Subcritical crack growth and crack tip driving forces in relation to material resistance // Corrosion Reviews. 2017. Vol. 35, Issue 4-5. doi: 10.1515/corrrev-2017-0034 

Gürses E., Miehe C. A computational framework of three-dimensional configurational-force-driven brittle crack propagation // Computer Methods in Applied Mechanics and Engineering. 2009. Vol. 198, Issue 15-16. P. 1413–1428. doi: 10.1016/j.cma.2008.12.028 

Hybrid discrete dislocation models for fatigue crack growth / Curtin W. A., Deshpande V. S., Needleman A., Van der Giessen E., Wallin M. // International Journal of Fatigue. 2010. Vol. 32, Issue 9. P. 1511–1520. doi: 10.1016/j.ijfatigue.2009.10.015 

Effect of load amplitude change on the fatigue life of cracked Al plate repaired with composite patch / Albedah A., Khan S. M. A., Benyahia F., Bachir Bouiadjra B. // International Journal of Fatigue. 2016. Vol. 88. P. 1–9. doi: 10.1016/j.ijfatigue.2016.03.002 

Broek D. Elementary Engineering Fracture Mechanic. 4th ed. Springer, 1982. 540 p.

Kern M., Berger P., Hügel H. Magneto-Fluid Dynamics Control Of Seam Quality In CO2 Laser Beam Welding // Welding Research Supplement. 2000. P. 72s–78s.

Tse H. C., Man H. C., Yue T. M. Effect of electric and magnetic fields on plasma control during CO2 laser welding // Optics and Lasers in Engineering. 1999. Vol. 32, Issue 1. P. 55–63. doi: 10.1016/s0143-8166(99)00045-7 

Dar Y. A., Singh C., Farooq Y. Effects of External Magnetic Field on Welding Arc of Shielded Metal Arc Welding // Indian Journal of Applied Research. 2011. Vol. 4, Issue 4. P. 200–203. doi: 10.15373/2249555x/apr2014/60 

Senapati A., Mohanty S. brata. Effects of External Magnetic Field on Mechanical properties of a welded M.S metal through Metal Shield Arc Welding // International Journal of Engineering Trends and Technology. 2014. Vol. 10, Issue 6. P. 297–303. doi: 10.14445/22315381/ijett-v10p258 

Metallurgical Characterization of API X65 Steel Joint Welded by MIG Welding Process with Axial Magnetic Field / Natividad C., García R., López V. H., Contreras A., Salazar M. // Materials Research. 2017. Vol. 20, Issue 5. P. 1174–1178. doi: 10.1590/1980-5373-mr-2016-0182 



DOI: https://doi.org/10.15587/1729-4061.2018.122919

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Sugiarto Sugiarto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061