Development of technology of superconducting multilevel wiring in speed GaAs structures of LSI/VLSI

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.123143

Keywords:

complementary structures, epitaxy, integrated circuits, carbon films, superconductivity, magnetron deposition

Abstract

Technological aspects of the use of superconducting materials are considered and the possibility of making targets for magnetron deposition of films for the formation of cryoconductive wiring in GaAs-based LSI-structures is shown. The technological methods and regimes are determined and high-performance technology of cryoalloys making based on Al, Nb, V with Si, Ge and rare-earth metal admixtures and magnetron formation of superconducting films from aluminum, niobium and vanadium alloys are developed. In particular, technological regimes (ion current, accelerating voltage, deposition rate, plasma composition, uniformity of components per silicon substrate diameter) have been established, which provide a thickness of films at the level of 0.6-1 μm. Insignificant thermomechanical stresses (about 1 kg/cm2) and small grain size (~ 10 nm) will allow for excellent adhesion of deposited films and formation of a topological pattern of submicron sizes using photolithography.

The parameters and characteristics of the Schottky field GaAs transistors on homo- and heterostructures (Schottky barrier height 0.75-0.8 eV, non-ideality factor 1.2-2, breakdown voltage of Schottky barrier 15-30 V) are explored and methods for increasing the speed of the LSI-structures are defined. It is shown that increasing the speed of LSI/VLSI-structures on gallium arsenide is achieved by using thermostable cryomaterials as gate electrodes, conductors and contacts of source-drain regions of the Schottky field-effect transistors.

Author Biographies

Stepan Novosiadlyi, Vasyl Stefanyk PreCarpathian National University Shevchenko ave., 57, Ivano-Frankivsk, Ukraine, 76018

Doctor of Technical Sciences, Professor

Department of computer engineering and electronics

Myhaylo Kotyk, Vasyl Stefanyk Precarpathian National University Shevchenko ave., 57, Ivano-Frankivsk, Ukraine, 76018

Postgraduate student

Department of computer engineering and electronics

Bogdan Dzundza, Vasyl Stefanyk PreCarpathian National University Shevchenko ave., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Senior Researcher

Department of computer engineering and electronics

Volodymyr Gryga, Vasyl Stefanyk PreCarpathian National University Shevchenko ave., 57, Ivano-Frankivsk, Ukraine, 76018

PhD, Associate professor

Department of computer engineering and electronics

Sviatoslav Novosiadlyi, Company SoftServe Sakharova str., 23, Ivano-Frankivsk, Ukraine, 76000

Lead Engineer

Volodymyr Mandzyuk, Vasyl Stefanyk PreCarpathian National University Shevchenko ave., 57, Ivano-Frankivsk, Ukraine, 76018

PhD

Department of computer engineering and electronics

References

  1. Hezel, R. (2013). Silicon Nitride in Microelectronics and Solar Cells. Springer Science & Business Media, 401.
  2. Edwards, P. (2012). Manufacturing Technology in the Electronics Industry: An introduction. Springer Science & Business Media, 248.
  3. Colinge, J. P., Colinge, C. A. (2007). Physics of Semiconductor Devices. Springer Science & Business Media, 436.
  4. Salazar, K., Marci, K. (2012). Mineral commodity summaries. U.S. Geological Survey, Reston, Virginia, 58–60.
  5. Naumov, A. V. (2005). Obzor mirovogo rynka arsenida galliya. Tekhnologiya i konstruirovanie v elektronnoy apparature, 6, 53–57.
  6. Kameineni, V. K., Raymond, M., Bersch, E. J., Doris, B. B. (2010). GaAs structures with a gate dielectric based on aluminum-oxide layers. J. of Appl. Phys., 107, 093525.
  7. Yoshida, T., Hashizume, T. (2012). Insulated gate and surface passivation structures for GaN-based power transistors. Appl. Phys. Lett., 101, 102.
  8. Ossi, P. M., Miotello, A. (2007). Control of cluster synthesis in nano-glassy carbon films. Journal of Non-Crystalline Solids, 353 (18-21), 1860–1864. doi: 10.1016/j.jnoncrysol.2007.02.016
  9. Pizzini, S. (2015). Physical Chemistry of Semiconductor Materials and Processes. John Wiley & Sons. doi: 10.1002/9781118514610
  10. Kogut, I. T., Holota, V. I., Druzhinin, A., Dovhij, V. V. (2016). The Device-Technological Simulation of Local 3D SOI-Structures. Journal of Nano Research, 39, 228–234. doi: 10.4028/www.scientific.net/jnanor.39.228
  11. Rowell, J. M., Track, E. K., Brock, D. K. (2000). Superconductor ICs: the 100-GHz second generation. IEEE Spectrum, 37 (12), 40–46. doi: 10.1109/6.887595
  12. Alfeev, V. N. (1985). Integral'nye skhemy i mikroelektronnye ustroystva na sverhprovodnikah. Moscow: Radio i svyaz', 232.
  13. Weinstock, Н. (Ed.) (2000). Applications of superconductivity. Springer. doi: 10.1007/978-94-017-0752-7
  14. Merkulov, A. I., Merkulov, V. A. (2013). Osnovy konstruirovaniya integral'nyh mikroskhem. Samara: SGAU, 242.
  15. Shmidt, V. V. (2000). Vvedenie v fiziku sverhprovodnikov. Moscow: MCNMO, 402.
  16. Parinov, I. A. (2012). High-Temperature Superconductors. Overview. Microstructure and Properties of High-Temperature Superconductors. Springer-Verlag Berlin Heidelberg, 73–124. doi: 10.1007/978-3-642-34441-1_2
  17. Malik, M. A., Malik, B. A. (2014). High Temperature Superconductivity: Materials, Mechanism and Applications. Bulg. J. Phys., 41, 305–314.
  18. Novosiadlyi, S. P. (2010). Sub- i nanomikronna tekhnolohiya struktur VIS. Ivano-Frankivsk: Misto NV, 455.
  19. Novosiadlyi, S. P., Terletskyi, A. I. (2016). Diahnostyka submikronnykh struktur VIS. Ivano-Frankivsk: Simyk, 478.
  20. Novosyadlyj, S., Dzundza, B., Gryga, V., Novosyadlyj, S., Kotyk, M., Mandzyuk, V. (2017). Research into constructive and technological features of epitaxial gallium-arsenide structures formation on silicon substrates. Eastern-European Journal of Enterprise Technologies, 3 (5 (87)), 54–61. doi: 10.15587/1729-4061.2017.104563

Downloads

Published

2018-02-08

How to Cite

Novosiadlyi, S., Kotyk, M., Dzundza, B., Gryga, V., Novosiadlyi, S., & Mandzyuk, V. (2018). Development of technology of superconducting multilevel wiring in speed GaAs structures of LSI/VLSI. Eastern-European Journal of Enterprise Technologies, 1(5 (91), 53–62. https://doi.org/10.15587/1729-4061.2018.123143

Issue

Section

Applied physics