Study of anode processes during development of the new complex thiocarbamide­citrate copper plating electrolyte

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.123852

Keywords:

complex compounds, anodic polarization, limiting stage, diffusion overvoltage, polarization dependence

Abstract

The kinetics of anodic reactions occurring on copper in thiocarbamide-citrate solutions was studied. Thiocarbamide forms stable copper (I) complexes of the cationic type with a coordination number equal to unity. Citric acid ensures acid pH value of electrolyte and causes active dissolution of copper under conditions of anode polarization. The joint presence of CS(NH2)2 and C6H8O7 in the solution contributes to the copper electrode activation under conditions of anodic polarization. Increasing the concentration of thiocarbamide leads to a drastic shift of copper dissolution potentials towards the region of negative values. Study of the kinetics of anodic behavior of copper by acquiring the voltammograms revealed the nature of the limiting stage of reaction.

It is shown that the process of dissolution in a thiocarbamide-citrate electrolyte is controlled by the diffusion phase. This is confirmed by the results of graphical processing of polarization dependences in coordinates η–lg(1–ja/jd). An increase in υр within 5‒100 mV·s–1 causes an increase in jd from 2.2 to 12.0 mА·cm–2, which indicates diffusion control over the process. The process of copper dissolution proceeds under stationary mode with uniform etching of intragrain boundaries and volume of the metal's grain.

Author Biographies

Olha Smirnova, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of technical electrochemistry

Alexei Pilipenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of technical electrochemistry

Hanna Pancheva, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of labor and environment protection

Kateryna Rutkovska, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate student

Department of technical electrochemistry

References

  1. Huang, C. A., Chang, J. H., Hsu, F. Y. (2006). Electrocrystallization behavior of copper electrodeposited from aqueous sulfuric acid with thiourea and chloride additives. ECS Transactions, 2 (3), 329–334. doi: 10.1149/1.2196021
  2. Donepudi, V. S., Venkatachalapathy, R., Ozemoyah, P. O., Johnson, C. S., Prakash, J. (2001). Electrodeposition of Copper from Sulfate Electrolytes: Effects of Thiourea on Resistivity and Electrodeposition Mechanism of Copper. Electrochemical and Solid-State Letters, 4 (2), C13. doi: 10.1149/1.1342144
  3. Tantavichet, N., Pritzker, M. D. (2006). Aspects of copper electrodeposition from acidic sulphate solutions in presence of thiourea. Transactions of the IMF, 84 (1), 36–46. doi: 10.1179/174591906x10529
  4. Tantavichet, N., Damronglerd, S., Chailapakul, O. (2009). Influence of the interaction between chloride and thiourea on copper electrodeposition. Electrochimica Acta, 55 (1), 240–249. doi: 10.1016/j.electacta.2009.08.045
  5. Aravinda, C. L., Mayanna, S. M., Muralidharan, V. S. (2000). Electrochemical behaviour of alkaline copper complexes. Journal of Chemical Sciences, 112 (5), 543–550. doi: 10.1007/bf02709287
  6. Lizama-Tzec, F. I., Canché-Canul, L., Oskam, G. (2011). Electrodeposition of copper into trenches from a citrate plating bath. Electrochimica Acta, 56 (25), 9391–9396. doi: 10.1016/j.electacta.2011.08.023
  7. Wu, W.-G., Yang, F.-Z., Luo, M.-H., Tian, Z.-O., Zhou, S.-M. (2010). Electrodeposition of copper in a citrate bath and its application to a micro-electro-mechanical system. Acta Physico-Chimica Sinica, 26 (10), 2625–2632.
  8. Smirnova, O. L., Kutenko, Yu. L., Lazarenko, E. S. (2013). Anodnoe povedenie metallov podgruppy medi v kislyh tiokarbamidno-citratnyh rastvorah. Visnyk NTU «KhPI», 47 (1020), 121–128.
  9. Matrunchik, O. L., Belyak, M. A., Smirnova, O. L. (2016). Elektrodnye processy na mednom i serebryanom elektrodah v rastvorah na osnove organicheskih ligandov. Materialy X Mizhnarodnoi naukovo-praktychnoi studentskoi konferentsiyi mahistrantiv NTU «KhPI». Ch. 2. Kharkiv: NTU «KhPI», 237–238.
  10. Podchaynova, V. N., Simonova, L. N. (1990). Med' (Analiticheskaya himiya elementov). Moscow: Nauka, 279.
  11. Hamada, Y., Cox, R., Hamada, H. (2015). Cu2+-Citrate Dimer Complexes in Aqueous Solutions. Journal of Basic & Applied Sciences, 11, 583–589. doi: 10.6000/1927-5129.2015.11.78
  12. Kim, M. J., Choe, S., Kim, H. C., Cho, S. K., Kim, S.-K., Kim, J. J. (2015). Electrochemical Behavior of Citric Acid and Its Influence on Cu Electrodeposition for Damascene Metallization. Journal of the Electrochemical Society, 162 (8), D354–D359. doi: 10.1149/2.0561508jes
  13. Smirnova, O. L., Kutenko, Yu. L., Koval'chuk, A. S., Matrunchik, O. L. (2014). Elektrodnye processy na mednom elektrode v kislyh tiokarbamidno-citratnyh rastvorah. Visnyk NTU «KhPI», 28 (1071), 135–142.

Downloads

Published

2018-02-19

How to Cite

Smirnova, O., Pilipenko, A., Pancheva, H., Zhelavskyi, A., & Rutkovska, K. (2018). Study of anode processes during development of the new complex thiocarbamide­citrate copper plating electrolyte. Eastern-European Journal of Enterprise Technologies, 1(6 (91), 47–52. https://doi.org/10.15587/1729-4061.2018.123852

Issue

Section

Technology organic and inorganic substances