Research into effect of complex nanomodifiers on the strength of fine-grained concrete

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.127261

Keywords:

fine-grained concrete, micelles, surface-active substances, nanofiller, nanomodifier, strength

Abstract

We studied the effect of nanomodifiers, which consist of a mixture of a surface-active substance that creates micelles, and mineral modifying admixtures. A special feature of present research is studying a simultaneous effect of surface-active substances that create micelles, and mineral modifying admixtures, on a change in the strength of fine-grained concretes.

The modifying admixtures that are most widely used at present are microsilica and metakaolin. They have, however, certain disadvantages. The shortcomings of microsilica include a lack of stability in its properties as it represents the industrial waste. Metakaolin is rather costly because of high energy costs for its production. That is why we employed microsilica, lime, gypsum, and natural kaolin as the modifying admixtures in this research.

It was established in the course of our study it that the use of nanomodifiers, which consist of micelles solutions and mineral modifying admixtures, strengthens the rate of formation and the magnitude of strength of fine-grained concretes. The results of research showed that the processes of strength formation of concrete, when using gypsum or lime as a modifying admixture, speed up by 1.5–2 times at the initial period of its hardening (3 days). Subsequently, the rate of concrete strength formation, when it has a nanomodifier based on lime or gypsum, continues to exceed the rate of formation of strength of the concrete, which contains only MSAS, and concrete without additives. At the age of 28 days the nanomodified concrete demonstrates strength that is 70‒110 % larger than the strength of concrete without additives.

Thus, it was proved that in order to control processes of cement setting and strength formation of an artificial stone, which is obtained in the process of cement hydration, it is possible to use the micellar catalysis. Applying the micelles filled with modifying admixtures increases the absolute magnitude of compressive strength of fine-grained concretes.

The results obtained make it possible to reduce consumption of Portland cement when manufacturing fine-grained concretes, or to significantly reduce the time needed to fabricate monolithic structures from the specified concretes.

Author Biographies

Alexsandera Shishkina, Kryvyi Rih National University V. Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Technology of building products, materials and structures

Alexsander Shishkin, Kryvyi Rih National University V. Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor

Department of Technology of building products, materials and structures

References

  1. Murthy, A., Palani, G., Iyer, N. (2010). Impact Analysis of Concrete Structural Components. Defence Science Journal, 60 (3), 307–319. doi: 10.14429/dsj.60.358
  2. Kaprielov, S. S., Sheynfel'd, A. V., Kardumyan, G. S. (2010). Novye modificirovannye betony. Moscow: Paradiz, 258.
  3. Konsta-Gdoutos, M. S., Metaxa, Z. S., Shah, S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40 (7), 1052–1059. doi: 10.1016/j.cemconres.2010.02.015
  4. Haifeng, L., Jianguo, N. (2009). Mechanical behavior of reinforced concrete subjected to impact loading. Mechanics of Materials, 41 (12), 1298–1308. doi: 10.1016/j.mechmat.2009.05.008
  5. Iqbal, M. A., Rajput, A., Bhargava, P. (2017). Plain and Reinforced Concrete Targets Subjected to Projectile Impact. Procedia Engineering, 173, 138–144. doi: 10.1016/j.proeng.2016.12.050
  6. Frolov, A. V., Chumadova, L. I., Cherkashin, A. V., Akimov, L. I. (2014). Ekonomichnost' ispol'zovaniya i vliyanie nanorazmernyh chastic na svoystva legkih vysokoprochnyh betonov. Stroitel'stvo unikal'nyh zdaniy i sooruzheniy, 4 (19), 51–61.
  7. Ponomarev, A. N. (2009). Vysokokachestvennye betony. Analiz vozmozhnostey i praktika ispol'zovaniya metodov nanotekhnologii. Inzhenerno-stroitel'nyy zhurnal, 6, 25–33.
  8. Tolstoy, A., Lesovik, V., Zagorodnyuk, L., Kovaleva, I. (2015). Powder concretes with technogenic materials. Vestnik MGSU, 11, 101–109. doi: 10.22227/1997-0935.2015.11.101-109
  9. Shyshkina, O. O., Shyshkin, O. O. (2016). Study of the nanocatalysis effect on the strength formation of reactive powder concrete. Eastern-European Journal of Enterprise Technologies, 1 (6 (79)), 55–60. doi: 10.15587/1729-4061.2016.58718
  10. Shyshkina, O. O. (2016). Study of the effect of micelle-forming surfactants on the strength of cellular reactive powder concrete. Eastern-European Journal of Enterprise Technologies, 2 (6 (80)), 66–70. doi: 10.15587/1729-4061.2016.63706
  11. Shishkin, A., Shishkina, A., Vatin, N. (2014). Low-Shrinkage Alcohol Cement Concrete. Applied Mechanics and Materials, 633-634, 917–921. doi: 10.4028/www.scientific.net/amm.633-634.917
  12. Batrakov, V. G., Kaprielov, S. S., Ivanov, F. M., Sheynfel'd, A. V. (1990). Ocenka ul'tradispersnyh othodov metallurgicheskih proizvodstv kak dobavok v beton. Beton i zhelezobeton, 12, 15–17.
  13. Bazhenov, Yu. M. (2003). Tekhnologiya betona. Moscow: AVS, 500.
  14. Runova, R. F., Rudenko, I. I., Troyan, V. V., Tovstonis, V. V., Shcherbina, S. P., Pashina, L. D. (2008). Formirovanie struktury vysokoprochnyh betonov. Budivelni materialy, vyroby ta sanitarna tekhnika, 29, 91–97.
  15. Barabash, Y. V., Ksonshkevych, L. M., Krantovska, O. M. (2014). Vysokomitsni betony na mekhanoaktyvovanomu viazhuchomu. Zbirnyk naukovykh prats UkrDAZT, 149, 130–136.
  16. Jo, B.-W., Kim, C.-H., Tae, G., Park, J.-B. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21 (6), 1351–1355. doi: 10.1016/j.conbuildmat.2005.12.020
  17. Morozov, N. M., Borovskih, I. V. (2015). Vliyanie metakaolina na svoystva cementnyh sistem. Izvestiya KGASU, 3 (33), 127–132.
  18. Shyshkin, O. O. (2016). Study of the effect of compounds of transition elements on the micellar catalysis of strength formation of reactive powder concrete. Eastern-European Journal of Enterprise Technologies, 2 (6 (80)), 60–65. doi: 10.15587/1729-4061.2016.63957
  19. Ivashchenko, Yu. G., Muhambetkaliev, K. K., Timohin, D. K. (2014). Effektivnye glinocementnye kompozicii, modificirovannye organicheskimi dobavkami. Vestnik SGTU, 4 (77), 199–205.
  20. Dudina, S. N. (2010). Sorbciya iz rastvorov ionov Fe3+ i Ni2+ prirodnymi i aktivirovannymi glinami. Nauchnye vedomosti, 9 (80), 131–136.

Downloads

Published

2018-03-29

How to Cite

Shishkina, A., & Shishkin, A. (2018). Research into effect of complex nanomodifiers on the strength of fine-grained concrete. Eastern-European Journal of Enterprise Technologies, 2(6 (92), 29–33. https://doi.org/10.15587/1729-4061.2018.127261

Issue

Section

Technology organic and inorganic substances