Design of a set of nonlinear control systems of the arc PVD ion­plasma installation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.127708

Keywords:

coating, Arc-PVD, nonlinear control system, metal cutting tools, cathodic arc deposition

Abstract

Control systems over the set of technological processes of the installation for ion-plasma application of coatings on metal cutting tools are developed. The purpose of the development is the need to improve the quality and durability of manufactured tools by maintaining more accurate technological parameters of the installation. The result of our research is the developed new nonlinear models of control systems over all stages of operation. At the stage of ionic cleaning, a temperature rise in tool is maintained in line with the set linear program by enabling and disabling the arc discharge. Control system provides for a deviation from the program by ±4.5 K, which is 4 times less than the standard value. At the stage of applying a coating on the tool, the temperature is precisely stabilized in a vacuum chamber by a continuous change in voltage at the substrate, as well as pressure in it by a change in the flow rate of nitrogen into the chamber. Under the action of maximal disturbances, a deviation in pressure, 0.037 Pa, and in temperature, 0.45 K, is ensured. At the stage of cooling, a decrease in temperature is achieved in line with the program by changing the feed of nitrogen into the chamber. Under the action of maximal disturbances, a maximum cooling rate of 0.22 K/s is ensured, which is also better than the standard value. Thus, the application of the developed control systems allowed us to considerably improve tool resistance compared to the installations that are used at present. It is important that the developed control systems are easy to implement and make it possible to ensure high quality of the obtained tools.

Author Biographies

Kateryna Kyrkopulo, Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

Postgraduate student

Department of Information Technologies of Design in Mechanical Engineering

Vladimir Tonkonogyi, Institute of Industrial Technologies, Design and Management Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor, Director

Oleksii Stopakevych, Odessa National Polytechnic University Shevchenka ave., 1, Odessa, Ukraine, 65044

PhD, Associate Professor

Department of automation of power processes

Andrii Stopakevych, Odessa National O. S. Popov Academy of Telecommunications Kuznechna str., 1, Odessa, Ukraine, 65029

PhD, Associate Professor

Department of computer-integrated technological processes and industries

References

  1. Aksenov, I. I., Belous, V. A., Strel'nickiy, V. E., Aksenov, D. S. (2016). Vakuumno-dugovoe oborudovanie i tekhnologii pokrytiy v HFTI. VANT, 4 (104), 58–71.
  2. Tonkonohyi, V. M. (2004). Systema avtomatyzovanoho upravlinnia tekhnolohieiu nanesennia znosostiykykh ionno-plazmovykh pokryt. Visnyk Zhytomyrskoho derzhavnoho tekhnolohichnoho universytetu, 1 (28), 141–145.
  3. Marszałek, K., Małek, A., Winkowski, P., Woźny, K. (2016). LabVIEW controller for storage results and control parameters of low thickness antireflection coatings deposition processes. Elektronika – Konstrukcje, Technologie, Zastosowania, 57 (2), 31–34. doi: 10.15199/13.2016.2.6
  4. Tanaram, T., Thungsuk, N., Apirat, H., Mungkung, N., Okamura, Y., Yuji, T. (2016). Preparation of ZnO thin film by development low-pressure high-frequency plasma chemical vapor deposition system. International Journal of Materials Engineering, 6 (5), 155–158.
  5. Carter, D., Walde, H., McDonough, G., Roche, G. (2002). Parameter Optimization in Pulsed DC Reactive Sputter Deposition of Aluminum Oxide. Society of Vacuum Coaters. 45th Annual Technical Conference Proceeding, 570–577.
  6. Danyluk, M., Dhingra, A. (2015). Rolling Contact Fatigue in a Vacuum Test Equipment and Coating Analysis. Springer, 167. doi: 10.1007/978-3-319-11930-4
  7. Yamauchi, S., Ishibashi, K., Hatakeyama, S. (2014). Low pressure chemical vapor deposition of TiO2 layer in hydrogen-ambient. Journal of Crystallization Process and Technology, 04 (04), 185–192. doi: 10.4236/jcpt.2014.44023
  8. Kostyuk, G. I. (2008). Automated system of technological support of the combined treatment based on ion implantation and ion alloying, plasma coating and laser modification. 2008 23rd International Symposium on Discharges and Electrical Insulation in Vacuum. doi: 10.1109/deiv.2008.4676835
  9. Danyluk, M. (2010). Process Optimization of Ion Plating Nickel-Copper-Silver Thin Film Deposition. Processing of Nanoparticle Materials and Nanostructured Films, 169–185. doi: 10.1002/9780470931011.ch15
  10. Yanwen, H. (2017). Research of arc welding intellectual PID control. Trans. of Nanya Inst. of Tech., 96, 35–46.
  11. Przybylski, J., Majcher, A. (2014). The structure and application of a test stand for a PVD technology research control system. Problemy eksploatacji. Maintenance problems, 2, 73–82.
  12. Bodyagin, A. (2009). Avtomatizirovannaya sistema upravleniya rabotoy ustanovki ionno-plazmennogo napyleniya v vakuume MAP-2. STA, 3, 52–56.
  13. Brindley, J., Williams, T., Daniel, B., Bellido-Gonzalez, V., Papa, F., Sproul, W. (2016). A novel sensor using remote plasma emission spectroscopy monitoring and control of vacuum processes. Society of vacuum coaters. 59th Annual Technical Conference, H-2.
  14. Dyadyun, K. V., Chebukina, V. F. (2016). Process naneseniya ionno-plazmennyh pokrytiy i sistemnyy podhod k upravleniyu processom. Novi materialy i tekhnolohiyi v mashynobuduvanni, 1, 7–10.
  15. Stanovskyi, O. L., Tonkonohyi, V. M., Dorus, V. O. (2004). Modeliuvannia protsesiv teploperenosu pry nanesenni ionno-plazmovykh pokryt. Visnyk Cherkaskoho derzhavnoho tekhnolohichnoho universytetu, 1, 28–32.
  16. Tonkonogiy, V. M., Savel'eva, O. S. (2004). Identifikaciya modeley processov naneseniya ionno-plazmennyh pokrytiy na rezhushchiy instrument. Holodil'naya tekhnika i tekhnologiya, 2 (88), 96–99.
  17. Lunev, V. I., Samoylov, V. P. (1980). Balans energiy i teplovye effekty pri metallizacii sverhtverdyh materialov kondensaciey plazmy. Sverhtverdye materialy, 2, 7–12.
  18. Barvinyuk, V. A., Shitarev, I. L., Bogdanovich, I. A. (2009). Srabatyvaemye, iznosostoykie i teplozashchitnye pokrytiya dlya detaley gazovogo trakta turbiny kompressora i kamery sgoraniya GTD. Aviacionnaya i raketno-kosmicheskaya tekhnika, 3 (19), 11–28.
  19. Baranov, O. O., Kostyuk, G. I. (2015). Osazhdenie kachestvennogo ravnotolshchinnogo vakuumno-dugovogo pokrytiya na tverdosplavnyy rezhushchiy instrument pri obrabotke bol'shih partiy. Vistnyk NTU «KhPI», 40 (1149), 85–89.
  20. Tonkonogiy, V. M., Oborskiy, G. A. (1997). Rabotosposobnost' i nadezhnost' instrumentov s iznosostoykimi pokrytiyami. Trudy Odesskogo politekhnicheskogo universiteta, 1, 18–23.

Downloads

Published

2018-04-03

How to Cite

Kyrkopulo, K., Tonkonogyi, V., Stopakevych, O., & Stopakevych, A. (2018). Design of a set of nonlinear control systems of the arc PVD ion­plasma installation. Eastern-European Journal of Enterprise Technologies, 2(2 (92), 65–74. https://doi.org/10.15587/1729-4061.2018.127708