DOI: https://doi.org/10.15587/1729-4061.2018.140982

Investigation and analysis of the possibility of diffusionless phase transformations in the surface layer of a part under the action of grinding temperatures

Ala Bezpalova, Vladimir Lebedev, Natalia Klimenko, Tatiana Chumachenko, Inga Uryadnikova

Abstract


The possibility of diffusionless phase transformations in the surface layer of the ground part under the influence of instantaneous grinding temperature is investigated and analyzed. This is important because the phase Feα-Feγ transformations that may occur when grinding parts lead to the appearance of so-called grinding burns, which 2-3 times reduce the reliability and durability of the part in the working mechanism. The mechanism of phase transformations, the critical temperature of these transformations and the associated processing modes that provide this temperature are determined. This allows a reasonable approach to the definition of grinding modes and, if necessary, the application of the cooling method. In addition, the problem of optimizing grinding regimes can be solved if the processing performance is taken as a target function, and grinding temperature as a limitation. With rapid surface heating of the hardened steel part by the grinding temperature above the Ac1 line, there is a reverse martensitic transformation Feα→Feγ. The martensite range during cooling Mn-Mk to a large extent covers negative temperatures. Therefore, austenite is partially fixed in the surface layer, forming a so-called quenching burn. Dependences for determining the formation temperature for steel of any chemical composition, give the possibility to maintain the value of grinding temperature below this level during grinding. The mechanism of diffusionless reverse martensitic transformation in the high-speed surface heating by cutting grains (instantaneous temperature) is considered. The heating rate and the effect of the pressure produced by the abrasive grain on the metal during the chip removal are experimentally determined. Thus, the possibility of diffusionless phase transformation is substantiated and the dependences for the calculation of austenite formation temperatures are given, which in turn provides the opportunity to calculate safe processing regimes


Keywords


austenite; martensite; γ-iron; α-iron; heating rate; transformation temperature; martensite range; surface layer; critical temperature

References


Chumachenko, T. V. (2011). Tekhnologicheskoe obespechenie kachestva i proizvoditel'nosti obrabotki poverhnostey sheek valov rotorov gazovyh turbin, napylennyh mineralokeramikoy. Odessa, 163.

Lebedev, V. G., Klimenko, N. N., Al'-Adzhelat, S. A. (2013). Mekhanizm obrazovaniya prizhogov pri shlifovanii detaley iz zakalennyh staley. Naukovi notatky, 40, 141–144.

Lobodyuk, V. A., Estrin, E. I. (2009). Martensitnye prevrashcheniya. Moscow: Fizmalit, 352.

Kremen', Z. I., Yur'ev, V. G., Baboshkin, A. F. (2015). Tekhnologiya shlifovaniya v mashinostroenii. Sankt-Peterburg Politekhnika, 424.

Biront V. S. Teoriya termicheskoy obrabotki. Krasnoyarsk, 2007. 234 p.

Vliyanie teploty, obrazuyushcheysya pri shlifovanii. Biblioteka tekhnicheskoy literatury. Available at: http://delta-grup.ru/bibliot/39/76.htm

Lebedev, V., Klimenko, N., Uryadnikova, I., Chumachenko, T., Ovcharenko, A. (2017). Martensite transformations in the surface layer at grinding of parts of hardened steels. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 56–63. doi: https://doi.org/10.15587/1729-4061.2017.103149

Lebedev, V. G., Klimenko, N. N. (2015). Zakonomernosti obrazovaniya prizhogov otpuska pri shlifovanii podshipnikovyh staley. Perspektyvni tekhnolohiyi ta prylady, 6, 35–40.

Fedotov, A. K. (2012). Fizicheskoe materialovedenie. Vol. 2. Fazovye prevrashcheniya v metallah i splavah. Minsk: Vysshaya shkola, 446.

Aleksandrova, M. Yu., Dobrynin, S. A., Firsov, G. I. (2008). Modelirovanie temperaturnogo polya na poverhnosti detali pri naruzhnom bescentrovom shlifovanii. Vestnik nauchno-tekhnicheskogo razvitiya. Nacional'naya Tekhnologicheskaya Gruppa, 10 (14), 46–53.

Kremen', Z., ‎Yur'ev, V.,‎ Baboshkin, A. (2017). Tekhnologiya shlifovaniya v mashinostroenii. Litres, 425.

Salov, P. M., Salova, D. P., Vinogradova, T. G., Saikin, S. S. (2016). Thermal phenomena during internal grinding with sliding feed. Vektor Nauki Tol’yattinskogo Gosudarstvennogo Universiteta, 1, 42–47. doi: https://doi.org/10.18323/2073-5073-2016-1-42-47

Li, X., Ma, X., Subramanian, S. V., Shang, C., Misra, R. D. K. (2014). Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700MPa high strength linepipe steel. Materials Science and Engineering: A, 616, 141–147. doi: https://doi.org/10.1016/j.msea.2014.07.100

Rajasekhara, S., Ferreira, P. J. (2011). Martensite→austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel. Acta Materialia, 59 (2), 738–748. doi: https://doi.org/10.1016/j.actamat.2010.10.012

Kaluba, W., Kaluba, T., Zielinska-Lipiec, A. (2007). Morphological Evolutions in Steels during Continuous Rapid Heating. Materials Science Forum, 539-543, 4669–4674. doi: https://doi.org/10.4028/www.scientific.net/msf.539-543.4669

Li, C. H., Ding, Y. C., Lu, B. H. (2008). Innovative Technology Investigation into Integrate the Surface Hardening Process with the Grinding Precision Finishing for CBN Grinding Crankshaft. 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. doi: https://doi.org/10.1109/wicom.2008.3039

Xu, Y. (1993). The role of retained austenite and residual stresses in rolling contac. DigitalCommons@University of Nebraska – Lincoln. 1993. Available at: http://digitalcommons.unl.edu/dissertations/AAI9611077/

Jin, S., Huang, D., Morris, J. W. Jr., Thomas, G. (2010). Use of the reverse martensitic transformation and precipitation to enhance the strength and stability of austenite. Lawrence Berkeley National Laboratory, 18.

Golovin, I. S., Komissarov, A. A., Kustov, S. B., Maikranz-Valentin, M., Siemers, C. (2010). Phase impact of thermal cycling on reversibility and anelastic- transformations ity of martensitic transformation in Fe-22Mn-3Si alloy. Metallofizika i Noveishie Tekhnologii, 32 (2), 191–201.

Analyse des évolutions structurales et du comportement mécanique d'un acier au chrome-nickel-molybdène à très bas carbone du type Z1CNDA 12-09-02, en fonction des traitements thermiques. Available at: https://www.theses.fr/1989PA112002

Lebedev, V., Klimenko, N., Chumachenko, T., Uryadnikova, I., Ovcharenko, A. (2016). Definition of the amount of heat released during metal cutting by abrasive grain and the contact temperature of the ground surface. Eastern-European Journal of Enterprise Technologies, 5 (7 (83)), 43–50. doi: https://doi.org/10.15587/1729-4061.2016.81207

Mirzoev, D. A., Mirzoev, A. A., Chirkov, P. V. (2016). Leave martensite in the input of rapid heating. Bulletin of SUSU. Series: Mathematics. Mechanics. Physics, 8 (1), 61–65.

Gulyaev, A. P. (2011). Metallovedenie. Moscow, 643.

Blank, V. D., Estrin, E. I. (2011). Fazovye prevrashcheniya v tverdyh telah pri vysokom davlenii. Moscow, 412.

Kaufman, L., Cohen, M. (1958). Thermodynamics and kinetics of martensitic transformations. Progress in Metal Physics, 7, 165–246. doi: https://doi.org/10.1016/0502-8205(58)90005-4

Tkachenko, I. F. (1997). Raschetnoe opredelenie temperatury ravnovesiya mezhdu austenitom i martensitom. Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki, 3, 81–82.

Metodika prigotovleniya mikroshlifa. Available at: https://infourok.ru/laboratornaya-rabota-metodika-prigotovleniya-mikroshlifa-852852.html

Mikroskop MIM-7. Available at: http://mikroskop-1.ru/?name=Mikroskopy~MIM-7&ref

Gorlach, V. V., Egorov, V. L., Ivanov, N. A. (2006). Obrabotka, predstavlenie, interpretaciya rezul'tatov izmereniy. Omsk: Izdatel'stvo SibADI, 85.

Maslov, E. N. (1984). Teoriya shlifovaniya materialov. Moscow: Mashinostroenie, 320.

Lyubov, B. Ya. (2013). Kineticheskaya teoriya fazovyh prevrashcheniy. Moscow: Metallurgiya, 375.


GOST Style Citations


Chumachenko T. V. Tekhnologicheskoe obespechenie kachestva i proizvoditel'nosti obrabotki poverhnostey sheek valov rotorov gazovyh turbin, napylennyh mineralokeramikoy: diss. … kand. tekhn. nauk. Odessa, 2011. 163 p.

Lebedev V. G., Klimenko N. N., Al'-Adzhelat S. A. Mekhanizm obrazovaniya prizhogov pri shlifovanii detaley iz zakalennyh staley // Naukovi notatky. 2013. Issue 40. P. 141–144.

Lobodyuk V. A., Estrin E. I. Martensitnye prevrashcheniya. Moscow: Fizmalit, 2009. 352 p.

Kremen' Z. I., Yur'ev V. G., Baboshkin A. F. Tekhnologiya shlifovaniya v mashinostroenii. Sankt-Peterburg Politekhnika, 2015. 424 p.

Biront V. S. Teoriya termicheskoy obrabotki. Krasnoyarsk, 2007. 234 p.

Vliyanie teploty, obrazuyushcheysya pri shlifovanii // Biblioteka tekhnicheskoy literatury. URL: http://delta-grup.ru/bibliot/39/76.htm

Martensite transformations in the surface layer at grinding of parts of hardened steels / Lebedev V., Klimenko N., Uryadnikova I., Chumachenko T., Ovcharenko A. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, Issue 12 (87). P. 56–63. doi: https://doi.org/10.15587/1729-4061.2017.103149 

Lebedev V. G., Klimenko N. N. Zakonomernosti obrazovaniya prizhogov otpuska pri shlifovanii podshipnikovyh staley // Perspektyvni tekhnolohiyi ta prylady. 2015. Issue 6. P. 35–40.

Fedotov A. K. Fizicheskoe materialovedenie. Vol. 2. Fazovye prevrashcheniya v metallah i splavah. Minsk: Vysshaya shkola, 2012. 446 p.

Aleksandrova M. Yu., Dobrynin S. A., Firsov G. I. Modelirovanie temperaturnogo polya na poverhnosti detali pri naruzhnom bescentrovom shlifovanii // Vestnik nauchno-tekhnicheskogo razvitiya. Nacional'naya Tekhnologicheskaya Gruppa. 2008. Issue 10 (14). P. 46–53.

Kremen' Z., ‎Yur'ev V.,‎ Baboshkin A. Tekhnologiya shlifovaniya v mashinostroenii. Litres, 2017. 425 p.

Thermal phenomena during internal grinding with sliding feed / Salov P. M., Salova D. P., Vinogradova T. G., Saikin S. S. // Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta. 2016. Issue 1. P. 42–47. doi: https://doi.org/10.18323/2073-5073-2016-1-42-47 

Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700MPa high strength linepipe steel / Li X., Ma X., Subramanian S. V., Shang C., Misra R. D. K. // Materials Science and Engineering: A. 2014. Vol. 616. P. 141–147. doi: https://doi.org/10.1016/j.msea.2014.07.100 

Rajasekhara S., Ferreira P. J. Martensite→austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel // Acta Materialia. 2011. Vol. 59, Issue 2. P. 738–748. doi: https://doi.org/10.1016/j.actamat.2010.10.012 

Kaluba W., Kaluba T., Zielinska-Lipiec A. Morphological Evolutions in Steels during Continuous Rapid Heating // Materials Science Forum. 2007. Vol. 539-543. P. 4669–4674. doi: https://doi.org/10.4028/www.scientific.net/msf.539-543.4669 

Li C. H., Ding Y. C., Lu B. H. Innovative Technology Investigation into Integrate the Surface Hardening Process with the Grinding Precision Finishing for CBN Grinding Crankshaft // 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. 2008. doi: https://doi.org/10.1109/wicom.2008.3039 

Xu Y. The role of retained austenite and residual stresses in rolling contac // DigitalCommons@University of Nebraska – Lincoln. 1993. URL: http://digitalcommons.unl.edu/dissertations/AAI9611077/

Use of the reverse martensitic transformation and precipitation to enhance the strength and stability of austenite / Jin S., Huang D., Morris J. W. Jr., Thomas G. Lawrence Berkeley National Laboratory, 2010. 18 p.

Phase impact of thermal cycling on reversibility and anelastic- transformations ity of martensitic transformation in Fe-22Mn-3Si alloy / Golovin I. S., Komissarov A. A., Kustov S. B., Maikranz-Valentin M., Siemers C. // Metallofizika i Noveishie Tekhnologii. 2010. Vol. 32, Issue 2. P. 191–201.

Analyse des évolutions structurales et du comportement mécanique d'un acier au chrome-nickel-molybdène à très bas carbone du type Z1CNDA 12-09-02, en fonction des traitements thermiques. URL: https://www.theses.fr/1989PA112002

Definition of the amount of heat released during metal cutting by abrasive grain and the contact temperature of the ground surface / Lebedev V., Klimenko N., Chumachenko T., Uryadnikova I., Ovcharenko A. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 7 (83). P. 43–50. doi: https://doi.org/10.15587/1729-4061.2016.81207 

Mirzoev D. A., Mirzoev A. A., Chirkov P. V. Leave martensite in the input of rapid heating // Bulletin of SUSU. Series: Mathematics. Mechanics. Physics. 2016. Vol. 8, Issue 1. P. 61–65.

Gulyaev A. P. Metallovedenie. Moscow, 2011. 643 p.

Blank V. D., Estrin E. I. Fazovye prevrashcheniya v tverdyh telah pri vysokom davlenii. Moscow, 2011. 412 p.

Kaufman L., Cohen M. Thermodynamics and kinetics of martensitic transformations // Progress in Metal Physics. 1958. Vol. 7. P. 165–246. doi: https://doi.org/10.1016/0502-8205(58)90005-4 

Tkachenko I. F. Raschetnoe opredelenie temperatury ravnovesiya mezhdu austenitom i martensitom // Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 1997. Issue 3. P. 81–82.

Metodika prigotovleniya mikroshlifa. URL: https://infourok.ru/laboratornaya-rabota-metodika-prigotovleniya-mikroshlifa-852852.html

Mikroskop MIM-7. URL: http://mikroskop-1.ru/?name=Mikroskopy~MIM-7&ref

Gorlach V. V., Egorov V. L., Ivanov N. A. Obrabotka, predstavlenie, interpretaciya rezul'tatov izmereniy. Omsk: Izdatel'stvo SibADI, 2006. 85 p.

Maslov E. N. Teoriya shlifovaniya materialov. Moscow: Mashinostroenie, 1984. 320 p.

Lyubov B. Ya. Kineticheskaya teoriya fazovyh prevrashcheniy. Moscow: Metallurgiya, 2013. 375 p.







Copyright (c) 2018 Ala Bezpalova, Vladimir Lebedev, Natalia Klimenko, Tatiana Chumachenko, Inga Uryadnikova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061