DOI: https://doi.org/10.15587/1729-4061.2019.154712

Features of the estimation of the intensity of heat exchange in self-ventilated disk-shoe brakes of vehicles

Nikolaj Volchenko, Aleksandr Volchenko, Dmitriy Volchenko, Pavel Poliakov, Volоdymyr Malyk, Dmitriy Zhuravliov, Vasyl Vytvytskyi, Petr Krasin

Abstract


Analysis of the energy load of a cargo vehicle self-ventilated disk-brake system, which significantly affects the operational parameters of its friction pairs is made. Plastic deformation of the disk friction belts can be observed under cyclic loading of the brake friction pairs, and the deformation process is aggravated by the fact that the yield strength of the material drops in their local zones. Due to plastic friction during compression of the disk friction belts heated zones, therefore they bulge, further leading to the formation of microcracks.

The research is based on the fact that during the vehicle braking moment, the intensity of heat transfer from the outer and inner, matte and polished surfaces of the self-ventilating braking disk by convection is much lower than the intensity of heat dissipation processes in the right and left body of the half-disks under heat conduction. This is explained by the fact that the rate of heating is ten times higher than the rate of forced air cooling.

As a result of the research, the regularities of the thermal conductivity change in the half-disk side surface, the inverse of which is the thermal resistance of the half-disk were revealed. The design and heat transfer processes in the self-ventilated disk-shoe brake of the vehicle are considered. The intensity of heat transfer of a vehicle's self-ventilated brake disk is investigated in relation to speed and with account of heat transfer coefficients from external and internal surfaces of the disk. The influence on the intensity of the heat transfer process on the surface areas through the disk thickness is established

Keywords


disk-shoe brake; self-ventilated brake disk; friction belt; friction pair; heat-exchange surface; coefficients: heat emission; heat transfer

References


GOST R41.13-2007. (Pravila No. 13 EEK OON). Edinoobraznye predpisaniya, kasayushchiesya transportnyh sredstv kategoriy M, N i O v otnoshenii tormozheniya (2009). Moscow, 170.

Dzhanahmedov, A. H. et. al. (2016). Proektnyy i proverochnyy raschet frikcionnyh uzlov barabanno- i diskovo-kolodochnyh tormozov transportnyh sredstv. Baku, 272.

Hudz, H. S., Hlobchak, M. V., Klypko, O. R.; Hudz, H. S. (Ed.) (2017). Kompleksna otsinka teplonavantazhenosti dyskovykh halm avtobusiv na tryvalykh rezhymakh roboty. Lviv: Halytska Vydavnycha Spilka, 123.

Krauser, R., Kohlgruber, K. (1976). Temperaturberechnung in Scheibenbremsen. Automobile Industrie, 4, 37–48.

Sisson, A. E. (1978). Thermal Analysis of Vented Brake Rotors. SAE Technical Paper Series. doi: https://doi.org/10.4271/780352

Limpert, R. (1972). An Investigation of Thermal Conditions Leading to Surface Rupture of Cast Iron Rotors. SAE Technical Paper Series. doi: https://doi.org/10.4271/720447

Morgan, S., Dennis, R. W. (1972). A Theoretical Prediction of Disc Brake Temperatures and a Comparison with Experimental Data. SAE Technical Paper Series. doi: https://doi.org/10.4271/720090

Zhou, S., Yang, Y., Xie, J. (2011). Transient temperature and thermal stress distribution simulation analysis of high-speed train brake disk. Journal of Mechanical Engineering, 47 (22), 55–60.

Rabotnov, Yu. N. (2009). Mekhanika deformiruemogo tverdogo tela pri trenii. Moscow: Nauka, 744.

Zaynullin, R. S. (2017). Obespechenie rabotosposobnosti oborudovaniya v usloviyah mekhanohimicheskoy povrezhdaemosti. Ufa, 426.

Kindrachuk, M. V., Vol’chenko, D. A., Vol’chenko, N. A., Stebeletskaya, N. M., Voznyi, A. V. (2017). Influence of Hydrogen on the Wear Resistance of Materials in the Friction Couples of Braking Units. Materials Science, 53 (2), 282–288. doi: https://doi.org/10.1007/s11003-017-0073-z

Kindrachuk, M. V., Vol’chenko, A. I., Vol’chenko, D. A., Zhuravlev, D. Y., Chufus, V. M. (2018). Electrodynamics of the Thermal Contact Friction Interaction in Metal-Polymer Friction Couples. Materials Science, 54 (1), 69–77. doi: https://doi.org/10.1007/s11003-018-0159-2

Sahin, V. V. (2013). Konvektivnyy teploobmen v odnorodnoy srede teplootdachi. Sankt-Peterburg: Voenmekh, 224.

Belyakov, N. S., Nosko, A. P. (2010). Neideal'nyy teplovoy kontakt tel pri trenii. Moscow: Knizhnyy dom «LIBROKOM», 104 p.

Dzhanahmedov, A. H., Dyshin, O. A., Dzhavadov, M. Ya.; Dzhanahmedov, A. H. (Ed.) (2014). Sinergetika i fraktaly v tribologii. Baku: Apostroff, 501.

Pat. No. 2594044S1 RF. Sposob opredeleniya ploshchadey poverhnostey metallicheskih diskov pri razlichnoy ih energoemkosti v diskovo-kolodochnyh tormoznyh ustroystvah (2015). No. 2015122732/11; declareted: 11.06.2015; published: 10.08.2016, Bul. No. 22, 15.


GOST Style Citations


GOST R41.13-2007. (Pravila No. 13 EEK OON). Edinoobraznye predpisaniya, kasayushchiesya transportnyh sredstv kategoriy M, N i O v otnoshenii tormozheniya. Moscow, 2009. 170 p.

Proektnyy i proverochnyy raschet frikcionnyh uzlov barabanno- i diskovo-kolodochnyh tormozov transportnyh sredstv: standart / Dzhanahmedov A. H. et. al. Baku, 2016. 272 p.

Hudz H. S., Hlobchak M. V., Klypko O. R. Kompleksna otsinka teplonavantazhenosti dyskovykh halm avtobusiv na tryvalykh rezhymakh roboty: monohrafiya / H. S. Hudz (Ed.). Lviv: Halytska Vydavnycha Spilka, 2017. 123 p.

Krauser R., Kohlgruber K. Temperaturberechnung in Scheibenbremsen // Automobile Industrie. 1976. Issue 4. P. 37–48.

Sisson A. E. Thermal Analysis of Vented Brake Rotors // SAE Technical Paper Series. 1978. doi: https://doi.org/10.4271/780352 

Limpert R. An Investigation of Thermal Conditions Leading to Surface Rupture of Cast Iron Rotors // SAE Technical Paper Series. 1972. doi: https://doi.org/10.4271/720447 

Morgan S., Dennis R. W. A Theoretical Prediction of Disc Brake Temperatures and a Comparison with Experimental Data // SAE Technical Paper Series. 1972. doi: https://doi.org/10.4271/720090 

Zhou S., Yang Y., Xie J. Transient temperature and thermal stress distribution simulation analysis of high-speed train brake disk // Journal of Mechanical Engineering. 2011. Vol. 47, Issue 22. P. 55–60.

Rabotnov Yu. N. Mekhanika deformiruemogo tverdogo tela pri trenii. Moscow: Nauka, 2009. 744 p.

Zaynullin R. S. Obespechenie rabotosposobnosti oborudovaniya v usloviyah mekhanohimicheskoy povrezhdaemosti. Ufa, 2017. 426 p.

Influence of Hydrogen on the Wear Resistance of Materials in the Friction Couples of Braking Units / Kindrachuk M. V., Vol’chenko D. A., Vol’chenko N. A., Stebeletskaya N. M., Voznyi A. V. // Materials Science. 2017. Vol. 53, Issue 2. P. 282–288. doi: https://doi.org/10.1007/s11003-017-0073-z 

Electrodynamics of the Thermal Contact Friction Interaction in Metal-Polymer Friction Couples / Kindrachuk M. V., Vol’chenko A. I., Vol’chenko D. A., Zhuravlev D. Y., Chufus V. M. // Materials Science. 2018. Vol. 54, Issue 1. P. 69–77. doi: https://doi.org/10.1007/s11003-018-0159-2 

Sahin V. V. Konvektivnyy teploobmen v odnorodnoy srede teplootdachi: monografiya. Sankt-Peterburg: Voenmekh, 2013. 224 p.

Belyakov N. S., Nosko A. P. Neideal'nyy teplovoy kontakt tel pri trenii. Moscow: Knizhnyy dom «LIBROKOM», 2010. 104 p.

Dzhanahmedov A. H., Dyshin O. A., Dzhavadov M. Ya. Sinergetika i fraktaly v tribologii: monografiya / A. H. Dzhanahmedov (Ed.). Baku: Apostroff, 2014. 501 p.

Sposob opredeleniya ploshchadey poverhnostey metallicheskih diskov pri razlichnoy ih energoemkosti v diskovo-kolodochnyh tormoznyh ustroystvah: Pat. No. 2594044S1 RF. No. 2015122732/11; declareted: 11.06.2015; published: 10.08.2016, Bul. No. 22. 15 p.







Copyright (c) 2019 Nikolaj Volchenko, Aleksandr Volchenko, Dmitriy Volchenko, Pavel Poliakov, Volоdymyr Malyk, Dmitriy Zhuravliov, Vasyl Vytvytskyi, Petr Krasin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061