Minimization of power losses by traction-transportation vehicles at motion over a bearing surface that undergoes deformation
DOI:
https://doi.org/10.15587/1729-4061.2019.156721Keywords:
traction-transportation vehicles, running system, power losses, snow coverAbstract
The paper reports the construction of a method aimed at minimizing power losses by traction-transportation vehicles at motion over a bearing surface resulting in the formation of ruts. The purpose of this study is to improve a traction efficiency coefficient for the off-road traction-transportation vehicles by determining and minimizing power losses related to forming a rut over a bearing surface under the action of a vehicle’s running gear. Improving the traction-transportation vehicles efficiency coefficient, which is 55÷65 %, is a priority in the development of agricultural mechanization. Part of the losses that are associated with the structure of a vehicle is almost not controlled in the process of operation. However, those substantial losses in running systems that reach 20 % can be managed. Control over them implies adjusting the settings of running systems in the traction-transportation vehicles to the condition of a bearing surface. Specifically, in the course of the study we analyzed the magnitudes of power required to displace elements in the system «a vehicle’s frame ‒ suspension ‒ running system ‒ deformed bearing surface» based on determining the force and kinematic factors.
Based on direct measurements, we determine power losses when running systems form a rut over a bearing surface and when the running system’s elements are displaced. It has been proposed to determine the power spent to form a rut by multiplying the share of gravity force related to the respective engine by the destruction rate of the bearing surface. Based on the derived results and an analysis of experimental data, we concluded that the proposed procedure for determining the power losses related to the formation of a rut by traction-transportation vehicles on a bearing surface makes it possible to substantiate the choice of parameters for running systems in order to improve the traction efficiency coefficientReferences
- Motrycz, G., Stryjek, P., Jackowski, J., Wieczorek, M., Ejsmont, J., Ronowski, G., Sobieszczyk, S. (2015). Research on operational characteristics of tyres with run flat insert. Journal of KONES. Powertrain and Transport, 19 (3), 319–326. doi: https://doi.org/10.5604/12314005.1138141
- Borkowski, W., Motrycz, G. (2015). Analysis of IED charge explosion on carrier road safety. Journal of KONES. Powertrain and Transport, 19 (4), 75–82. doi: https://doi.org/10.5604/12314005.1138310
- Panowicz, R., Barnat, W., Niezgoda, T. (2011). Numerical survey of the effect of a pressure pulse on selected types of vehicles and their crews. Mechanik, 5-6, 532–534.
- Gorshkov, Yu. G., Starunova, I. N., Kalugin, A. A., Gal'yanov, I. V. (2016). The study of hysteris loss caused by pneumatic wheel mover interaction with the bearing surface. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 3 (59), 74–77.
- Podzorov, A., Prytkov, V., Cherkashina, E. (2011). The vehicle ride comfort increase at the expense of semiactive suspension system. Journal of KONES. Powertrain and Transport, 18 (1), 463–470.
- Lozia, Z., Zdanowicz, P. (2016). Optimization of damping in the passive automotive suspension system with using two quarter-car models. IOP Conference Series: Materials Science and Engineering, 148, 012014. doi: https://doi.org/10.1088/1757-899x/148/1/012014
- Smith, M. C., Swift, S. J. (2016). Design of passive vehicle suspensions for maximal least damping ratio. Vehicle System Dynamics, 54 (5), 568–584. doi: https://doi.org/10.1080/00423114.2016.1145242
- Bekker, M. G. (1969). Introduction to Terrain-Vehicle Systems. The University of Michigan Press, 846.
- Malenkov, M. I., Volov, V. A., Guseva, N. K., Lazarev, E. A. (2015). Increasing the mobility of Mars rovers by improving the locomotion systems and their control algorithms. Russian Engineering Research, 35 (11), 824–831. doi: https://doi.org/10.3103/s1068798x1511012x
- Gorelov, V., Maslennikov, L., Tropin, S. (2012). Forecasting of curvilinear motion’s characteristics of multi-axis vehicle at different laws of all wheel steering. Science and Education of the Bauman MSTU, 5, 75–96. doi: https://doi.org/10.7463/0512.0403845
- Tretyak, V. M., Boldovskiy, V. N., Potapov, N. N. (2007). Metod opredeleniya vozdeystviya hodovyh sistem tyagovo-transportnyh sredstv na pochvu. Vestnik nacional'nogo tekhnicheskogo universiteta “KhPI”, 12, 58–62.
- Gorelov, V. A., Padalkin, B. V., Chudakov, O. I. (2016). The Development of Power Distribution Law in Transmission of Active Road Based on the Analysis of the Power Factors in the Coupling Device. Science and Education of the Bauman MSTU, 12, 1–17. doi https://doi.org/10.7463/1216.0852826
- Troianovska, I. P., Pozhydaiev, S. P. (2013). Modeliuvannia kryvoliniynoho rukhu kolisnykh i husenychnykh traktornykh ahrehativ. Kyiv: AhrarMediaHrup, 303.
- Mozhaev, O., Kuchuk, H., Kuchuk, N., Mozhaev, M., Lohvynenko, M. (2017). Multiservice network security metric. 2017 2nd International Conference on Advanced Information and Communication Technologies (AICT). doi: https://doi.org/10.1109/aiact.2017.8020083
- Verros, G., Natsiavas, S., Papadimitriou, C. (2005). Design Optimization of Quarter-car Models with Passive and Semi-active Suspensions under Random Road Excitation. Modal Analysis, 11 (5), 581–606. doi: https://doi.org/10.1177/1077546305052315
- Tretiak, V. M. (2002). Zchleneni tiahlovo-transportni zasoby. Traktornaya energetika v rastenievodstve, 5, 48–52.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Oleksandr Mozhaiv, Heorhii Kuchuk, Dmytro Shvets, Viktor Tretiak, Mykhailo Tretiak, Vasyl Ostropilets, Viacheslav Markov, Mykhailo Mozhaiev, Tetiana Kolisnyk, Artem Nechayusov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.