DOI: https://doi.org/10.15587/1729-4061.2019.157307

Change in the physical­mechanical and decorative properties of labradorite under thermal exposure

Valentyn Korobiichuk, Volodymyr Shlapak, Ruslan Sobolevskyi, Oleksandr Sydorov, Liubov Shaidetska

Abstract


We have experimentally investigated samples from the four fields of coarse-grained labradorite, which is extracted in Ukraine. The samples of labradorite were tested at high temperatures of 200, 300, 400, 500, 600, 700, 800, 900 °С.

Red spots at the surface of samples is the result of oxidation of the metal Fe2+: at different fields of labradorite they cover a different area of the sample's surface of natural stone: it ranges from 39 to 60 %. An analysis of the polished labradorite surface after heating revealed that red inclusions are evenly distributed over the surface of labradorite samples. Oxidation of minerals, which is visually observed on all the samples of labradorite, starts at a temperature of 300 °С. One of the features in the research described in this paper is the application of digital image processing in order to quantitatively assess the Fe oxidation area (red spots) at the polished surface of labradorite samples. To a temperature of 500‒600 °С, there is a gradual increase in the oxidized area of the samples' surface. At temperatures above 700 °С, there is a sharp increase in the oxidized area at the samples' surface. In general, the oxidized spots of metals cover between 40 to 60 % of the surface of labradorite samples.

When heated, the labradorite samples become 50 % brighter than the original value for indicator L in the color system Lab.

A decrease in the velocity of ultrasonic wave propagation in labradorite samples occurs evenly, without surges. The reason for a decrease in the ultrasonic wave velocity is the formation of defects and cracks in labradorite samples due to an uneven thermal expansion of minerals. At a temperature of 700 °С ° or higher, there is a decrease in the velocity of ultrasound wave propagation in the samples of natural stone.

At heating, there is a decrease in the indicators for gloss in all labradorite samples. In general, when labradorite was heated up to 900 °С, the samples from the Ocheretyansky deposit lost 11.21 % of their gloss, from the Neviryvsky deposit ‒ 4.03 %, from the Osnikivske deposit ‒ 33.57 %, from the Katerinovsky deposit ‒ 15.3 %.


Keywords


labradorite; high temperatures; labradorite gloss indicators; decorativeness of natural stone; ultrasonic wave propagation

References


Martinho, E., Dionísio, A. (2018). Assessment Techniques for Studying the Effects of Fire on Stone Materials: A Literature Review. International Journal of Architectural Heritage, 1–25. doi: https://doi.org/10.1080/15583058.2018.1535008

Brantut, N., Heap, M. J., Meredith, P. G., Baud, P. (2013). Time-dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 52, 17–43. doi: https://doi.org/10.1016/j.jsg.2013.03.007

Shao, S., Ranjith, P. G., Wasantha, P. L. P., Chen, B. K. (2015). Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 54, 96–108. doi: https://doi.org/10.1016/j.geothermics.2014.11.005

Ivorra, S., García-Barba, J., Mateo, M., Pérez-Carramiñana, C., Maciá, A. (2013). Partial collapse of a ventilated stone façade: Diagnosis and analysis of the anchorage system. Engineering Failure Analysis, 31, 290–301. doi: https://doi.org/10.1016/j.engfailanal.2013.01.045

Ozguven, A., Ozcelik, Y. (2014). Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Engineering Geology, 183, 127–136. doi: https://doi.org/10.1016/j.enggeo.2014.10.006

Kılıç, Ö. (2006). The influence of high temperatures on limestone P-wave velocity and Schmidt hammer strength. International Journal of Rock Mechanics and Mining Sciences, 43 (6), 980–986. doi: https://doi.org/10.1016/j.ijrmms.2005.12.013

Liu, S., Xu, J. (2015). An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, 185, 63–70. doi: https://doi.org/10.1016/j.enggeo.2014.11.013

Vazquez, P., Acuña, M., Benavente, D., Gibeaux, S., Navarro, I., Gomez-Heras, M. (2016). Evolution of surface properties of ornamental granitoids exposed to high temperatures. Construction and Building Materials, 104, 263–275. doi: https://doi.org/10.1016/j.conbuildmat.2015.12.051

Eren Sarıcı, D. (2016). Thermal deterioration of marbles: Gloss, color changes. Construction and Building Materials, 102, 416–421. doi: https://doi.org/10.1016/j.conbuildmat.2015.10.200

Korobiichuk, V. (2016). Study of Ultrasonic Characteristics of Ukraine Red Granites at Low Temperatures. Advances in Intelligent Systems and Computing, 653–658. doi: https://doi.org/10.1007/978-3-319-48923-0_69

Korobiichuk, I., Korobiichuk, V., Hájek, P., Kokeš, P., Juś, A., Szewczyk, R. (2018). Investigation of leznikovskiy granite by ultrasonic methods. Archives of Mining Sciences, 63 (1), 75–82. doi: http://doi.org/10.24425/118886

Korobiichuk, V., Shamrai, V., Iziumova, O., Tolkach, O., Sobolevskyi, R. (2016). Definition of hue of different types of pokostivskiy granodiorite using digital image processing. Eastern-European Journal of Enterprise Technologies, 4 (5 (82)), 52–57. doi: https://doi.org/10.15587/1729-4061.2016.74849

Chaki, S., Takarli, M., Agbodjan, W. P. (2008). Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22 (7), 1456–1461. doi: https://doi.org/10.1016/j.conbuildmat.2007.04.002

Keshavarz, M., Pellet, F. L., Loret, B. (2010). Damage and Changes in Mechanical Properties of a Gabbro Thermally Loaded up to 1,000°C. Pure and Applied Geophysics, 167 (12), 1511–1523. doi: https://doi.org/10.1007/s00024-010-0130-0

Hugh-Jones, D. (1997). Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes. American Mineralogist, 82 (7-8), 689–696. doi: https://doi.org/10.2138/am-1997-7-806

Kompaníková, Z., Gomez-Heras, M., Michňová, J., Durmeková, T., Vlčko, J. (2014). Sandstone alterations triggered by fire-related temperatures. Environmental Earth Sciences, 72 (7), 2569–2581. doi: https://doi.org/10.1007/s12665-014-3164-2

Annerel, E., Taerwe, L. (2011). Methods to quantify the colour development of concrete exposed to fire. Construction and Building Materials, 25 (10), 3989–3997. doi: https://doi.org/10.1016/j.conbuildmat.2011.04.033

Ozguven, A., Ozcelik, Y. (2013). Investigation of some property changes of natural building stones exposed to fire and high heat. Construction and Building Materials, 38, 813–821. doi: https://doi.org/10.1016/j.conbuildmat.2012.09.072


GOST Style Citations


Martinho E., Dionísio A. Assessment Techniques for Studying the Effects of Fire on Stone Materials: A Literature Review // International Journal of Architectural Heritage. 2018. P. 1–25. doi: https://doi.org/10.1080/15583058.2018.1535008 

Time-dependent cracking and brittle creep in crustal rocks: A review / Brantut N., Heap M. J., Meredith P. G., Baud P. // Journal of Structural Geology. 2013. Vol. 52. P. 17–43. doi: https://doi.org/10.1016/j.jsg.2013.03.007 

Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy / Shao S., Ranjith P. G., Wasantha P. L. P., Chen B. K. // Geothermics. 2015. Vol. 54. P. 96–108. doi: https://doi.org/10.1016/j.geothermics.2014.11.005 

Partial collapse of a ventilated stone façade: Diagnosis and analysis of the anchorage system / Ivorra S., García-Barba J., Mateo M., Pérez-Carramiñana C., Maciá A. // Engineering Failure Analysis. 2013. Vol. 31. P. 290–301. doi: https://doi.org/10.1016/j.engfailanal.2013.01.045 

Ozguven A., Ozcelik Y. Effects of high temperature on physico-mechanical properties of Turkish natural building stones // Engineering Geology. 2014. Vol. 183. P. 127–136. doi: https://doi.org/10.1016/j.enggeo.2014.10.006 

Kılıç Ö. The influence of high temperatures on limestone P-wave velocity and Schmidt hammer strength // International Journal of Rock Mechanics and Mining Sciences. 2006. Vol. 43, Issue 6. P. 980–986. doi: https://doi.org/10.1016/j.ijrmms.2005.12.013 

Liu S., Xu J. An experimental study on the physico-mechanical properties of two post-high-temperature rocks // Engineering Geology. 2015. Vol. 185. P. 63–70. doi: https://doi.org/10.1016/j.enggeo.2014.11.013 

Evolution of surface properties of ornamental granitoids exposed to high temperatures / Vazquez P., Acuña M., Benavente D., Gibeaux S., Navarro I., Gomez-Heras M. // Construction and Building Materials. 2016. Vol. 104. P. 263–275. doi: https://doi.org/10.1016/j.conbuildmat.2015.12.051 

Eren Sarıcı D. Thermal deterioration of marbles: Gloss, color changes // Construction and Building Materials. 2016. Vol. 102. P. 416–421. doi: https://doi.org/10.1016/j.conbuildmat.2015.10.200 

Korobiichuk V. Study of Ultrasonic Characteristics of Ukraine Red Granites at Low Temperatures // Advances in Intelligent Systems and Computing. 2016. P. 653–658. doi: https://doi.org/10.1007/978-3-319-48923-0_69 

Investigation of leznikovskiy granite by ultrasonic methods / Korobiichuk I., Korobiichuk V., Hájek P., Kokeš P., Juś A., Szewczyk R. // Archives of Mining Sciences. 2018. Vol. 63, Issue 1. P. 75–82. doi: http://doi.org/10.24425/118886

Definition of hue of different types of pokostivskiy granodiorite using digital image processing / Korobiichuk V., Shamrai V., Iziumova O., Tolkach O., Sobolevskyi R. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 4, Issue 5 (82). P. 52–57. doi: https://doi.org/10.15587/1729-4061.2016.74849 

Chaki S., Takarli M., Agbodjan W. P. Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions // Construction and Building Materials. 2008. Vol. 22, Issue 7. P. 1456–1461. doi: https://doi.org/10.1016/j.conbuildmat.2007.04.002 

Keshavarz M., Pellet F. L., Loret B. Damage and Changes in Mechanical Properties of a Gabbro Thermally Loaded up to 1,000°C // Pure and Applied Geophysics. 2010. Vol. 167, Issue 12. P. 1511–1523. doi: https://doi.org/10.1007/s00024-010-0130-0 

Hugh-Jones D. Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes // American Mineralogist. 1997. Vol. 82, Issue 7-8. P. 689–696. doi: https://doi.org/10.2138/am-1997-7-806 

Sandstone alterations triggered by fire-related temperatures / Kompaníková Z., Gomez-Heras M., Michňová J., Durmeková T., Vlčko J. // Environmental Earth Sciences. 2014. Vol. 72, Issue 7. P. 2569–2581. doi: https://doi.org/10.1007/s12665-014-3164-2 

Annerel E., Taerwe L. Methods to quantify the colour development of concrete exposed to fire // Construction and Building Materials. 2011. Vol. 25, Issue 10. P. 3989–3997. doi: https://doi.org/10.1016/j.conbuildmat.2011.04.033 

Ozguven A., Ozcelik Y. Investigation of some property changes of natural building stones exposed to fire and high heat // Construction and Building Materials. 2013. Vol. 38. P. 813–821. doi: https://doi.org/10.1016/j.conbuildmat.2012.09.072 







Copyright (c) 2019 Valentyn Korobiichuk, Volodymyr Shlapak, Ruslan Sobolevskyi, Oleksandr Sydorov, Liubov Shaidetska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061