Change in the physicalmechanical and decorative properties of labradorite under thermal exposure
DOI:
https://doi.org/10.15587/1729-4061.2019.157307Keywords:
labradorite, high temperatures, labradorite gloss indicators, decorativeness of natural stone, ultrasonic wave propagationAbstract
We have experimentally investigated samples from the four fields of coarse-grained labradorite, which is extracted in Ukraine. The samples of labradorite were tested at high temperatures of 200, 300, 400, 500, 600, 700, 800, 900 °С.
Red spots at the surface of samples is the result of oxidation of the metal Fe2+: at different fields of labradorite they cover a different area of the sample's surface of natural stone: it ranges from 39 to 60 %. An analysis of the polished labradorite surface after heating revealed that red inclusions are evenly distributed over the surface of labradorite samples. Oxidation of minerals, which is visually observed on all the samples of labradorite, starts at a temperature of 300 °С. One of the features in the research described in this paper is the application of digital image processing in order to quantitatively assess the Fe oxidation area (red spots) at the polished surface of labradorite samples. To a temperature of 500‒600 °С, there is a gradual increase in the oxidized area of the samples' surface. At temperatures above 700 °С, there is a sharp increase in the oxidized area at the samples' surface. In general, the oxidized spots of metals cover between 40 to 60 % of the surface of labradorite samples.
When heated, the labradorite samples become 50 % brighter than the original value for indicator L in the color system Lab.
A decrease in the velocity of ultrasonic wave propagation in labradorite samples occurs evenly, without surges. The reason for a decrease in the ultrasonic wave velocity is the formation of defects and cracks in labradorite samples due to an uneven thermal expansion of minerals. At a temperature of 700 °С ° or higher, there is a decrease in the velocity of ultrasound wave propagation in the samples of natural stone.
At heating, there is a decrease in the indicators for gloss in all labradorite samples. In general, when labradorite was heated up to 900 °С, the samples from the Ocheretyansky deposit lost 11.21 % of their gloss, from the Neviryvsky deposit ‒ 4.03 %, from the Osnikivske deposit ‒ 33.57 %, from the Katerinovsky deposit ‒ 15.3 %.
References
- Martinho, E., Dionísio, A. (2018). Assessment Techniques for Studying the Effects of Fire on Stone Materials: A Literature Review. International Journal of Architectural Heritage, 1–25. doi: https://doi.org/10.1080/15583058.2018.1535008
- Brantut, N., Heap, M. J., Meredith, P. G., Baud, P. (2013). Time-dependent cracking and brittle creep in crustal rocks: A review. Journal of Structural Geology, 52, 17–43. doi: https://doi.org/10.1016/j.jsg.2013.03.007
- Shao, S., Ranjith, P. G., Wasantha, P. L. P., Chen, B. K. (2015). Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 54, 96–108. doi: https://doi.org/10.1016/j.geothermics.2014.11.005
- Ivorra, S., García-Barba, J., Mateo, M., Pérez-Carramiñana, C., Maciá, A. (2013). Partial collapse of a ventilated stone façade: Diagnosis and analysis of the anchorage system. Engineering Failure Analysis, 31, 290–301. doi: https://doi.org/10.1016/j.engfailanal.2013.01.045
- Ozguven, A., Ozcelik, Y. (2014). Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Engineering Geology, 183, 127–136. doi: https://doi.org/10.1016/j.enggeo.2014.10.006
- Kılıç, Ö. (2006). The influence of high temperatures on limestone P-wave velocity and Schmidt hammer strength. International Journal of Rock Mechanics and Mining Sciences, 43 (6), 980–986. doi: https://doi.org/10.1016/j.ijrmms.2005.12.013
- Liu, S., Xu, J. (2015). An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, 185, 63–70. doi: https://doi.org/10.1016/j.enggeo.2014.11.013
- Vazquez, P., Acuña, M., Benavente, D., Gibeaux, S., Navarro, I., Gomez-Heras, M. (2016). Evolution of surface properties of ornamental granitoids exposed to high temperatures. Construction and Building Materials, 104, 263–275. doi: https://doi.org/10.1016/j.conbuildmat.2015.12.051
- Eren Sarıcı, D. (2016). Thermal deterioration of marbles: Gloss, color changes. Construction and Building Materials, 102, 416–421. doi: https://doi.org/10.1016/j.conbuildmat.2015.10.200
- Korobiichuk, V. (2016). Study of Ultrasonic Characteristics of Ukraine Red Granites at Low Temperatures. Advances in Intelligent Systems and Computing, 653–658. doi: https://doi.org/10.1007/978-3-319-48923-0_69
- Korobiichuk, I., Korobiichuk, V., Hájek, P., Kokeš, P., Juś, A., Szewczyk, R. (2018). Investigation of leznikovskiy granite by ultrasonic methods. Archives of Mining Sciences, 63 (1), 75–82. doi: http://doi.org/10.24425/118886
- Korobiichuk, V., Shamrai, V., Iziumova, O., Tolkach, O., Sobolevskyi, R. (2016). Definition of hue of different types of pokostivskiy granodiorite using digital image processing. Eastern-European Journal of Enterprise Technologies, 4 (5 (82)), 52–57. doi: https://doi.org/10.15587/1729-4061.2016.74849
- Chaki, S., Takarli, M., Agbodjan, W. P. (2008). Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22 (7), 1456–1461. doi: https://doi.org/10.1016/j.conbuildmat.2007.04.002
- Keshavarz, M., Pellet, F. L., Loret, B. (2010). Damage and Changes in Mechanical Properties of a Gabbro Thermally Loaded up to 1,000°C. Pure and Applied Geophysics, 167 (12), 1511–1523. doi: https://doi.org/10.1007/s00024-010-0130-0
- Hugh-Jones, D. (1997). Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes. American Mineralogist, 82 (7-8), 689–696. doi: https://doi.org/10.2138/am-1997-7-806
- Kompaníková, Z., Gomez-Heras, M., Michňová, J., Durmeková, T., Vlčko, J. (2014). Sandstone alterations triggered by fire-related temperatures. Environmental Earth Sciences, 72 (7), 2569–2581. doi: https://doi.org/10.1007/s12665-014-3164-2
- Annerel, E., Taerwe, L. (2011). Methods to quantify the colour development of concrete exposed to fire. Construction and Building Materials, 25 (10), 3989–3997. doi: https://doi.org/10.1016/j.conbuildmat.2011.04.033
- Ozguven, A., Ozcelik, Y. (2013). Investigation of some property changes of natural building stones exposed to fire and high heat. Construction and Building Materials, 38, 813–821. doi: https://doi.org/10.1016/j.conbuildmat.2012.09.072
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Valentyn Korobiichuk, Volodymyr Shlapak, Ruslan Sobolevskyi, Oleksandr Sydorov, Liubov Shaidetska
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.