Definition of optimal driving range of electric vehicle considering its main parameters

Николай Иванович Слипченко, Виктор Александрович Письменецкий, Михаил Юрьевич Гуртовой, Вера Олеговна Махлова

Abstract


Simulation of electric vehicle (EV) operation modes allows evaluation of important parameters such as driving range, acceleration, capacity and type of storage battery. At present time, analytical dependences of EV mileage on the depth of battery discharge are virtually absent.

The task of analyzing and modeling EV parameters and features is of current importance and practical interest to developers and automakers.

Based on driving range simulation algorithm, computational experiment was conducted with further analysis of experimental data.

Analysis and modeling of the EV main parameters provided concrete results of dependences of battery discharge depth on driving range for different payload masses. It is shown that driving range decreases with increasing payload mass in a standard urban driving cycle.

The study of dependence of driving range on battery capacity and EV speed was conducted by regression method. The paper gives the search for the EV speed and battery capacity optimal values by the maximum driving range criterion according to the method of gradient descent.

As a result of two-parameter optimization the optimal speed values of EV with the mass of 1.4 tones were obtained (30 km/h and 85 A/h)


Keywords


driving range; electric vehicle; depth of discharge; power; computational experiment; parameter

References


Слипченко, Н. И. Исследование режимов работы АКБ и суперконденсатора в системе энергообеспечения электромобиля [Текст] / Н. И. Слипченко, В. А. Письменецкий, М. Ю. Гуртовой // Восточно-Европейский журнал передовых технологий. – 2012. – №4. – С.31-35.

Baker, B. Converted vehicle for battery electric drive: Aspects on the design of the software-driven vehicle control unit [Текст] : Proceedings of the 2nd EEVC, June 18-19, 2012 Dresden / Editors : B. Baker, L. Morawietz. – Expert verlag, 2012. – 201 p.

Ефремов, И. С. Теория и расчет тягового привода электромобиля [Текст] / И. С. Ефремов, А. П. Пролыгин, Ю. М. Андреев, А. Б. Миндлин // М.: Высшая школа, 1984. – 344 с.

Larminie, J. Electric Vehicle Techology Explained [Текст] / J. Larminie, J. Lowry // John Wiley & Sons Ltd, 2003. – 293 p.

Guzzella, L. Vehicle propulsion systems. Introduction to modelling and optimization [Текст] / L. Guzzella, A. Sciarretta // Springer-Verlag, 2005. – 291 p.

Dhameja S. Electric Vehicles Battery Systems [Текст] / S. Dhameja // Newnes, 2002. – 230 p.

Effectiveness of Supercapacitors as Power-Assist in Pure EV Using a Sodium-Nickel Chloride Battery as Main Energy Storage [Электронный ресурс] / EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. - Режим доступа : WWW/ URL: http:// www.elkraft.ntnu.no/eno/Papers2009/ EVS24_final_paper-giuseppe.pdf/ — 11.04.2013 г. — Загл. с экрана.

Burke, A. Ultracapacitors: why, how and where is the technology [Текст] / A. Burke // Journal of power sources. – № 91. – 2000. – рр. 37 – 50.

Аносов, В. Н. Анализ изменения разрядной емкости тяговой аккумуляторной батареи [Текст] / В. Н. Аносов, В.М. Кавешников // Транспорт: наука, техника, управление. – 2008. – № 6. – С. 33 – 36.

Львович, Я. Е. Теоретические основы конструирования, технологии и надежности РЭА [Текст] / Я. Е. Львович, В. Н. Фролов – М.: Радио и связь, 1986. – 191 с.

Бусыгин, Б. П. Электромобили (Методы расчета) [Текст] / Б. П. Бусыгин. – М. : МАДИ, 1979. – 71 с.

Slipchenko, N. I., Pismenetsky, V. A., Gurtovyi, M. Yu. (2012). Research and conditions of JSCB supercapacitors electric power supply system. Eastern-European Journal of Enterprise Technologies, 4, 31-35.

Giessler, M. (2012). Converted vehicle for battery electric drive: Aspects on the design of the software-driven vehicle control unit. B. Baker, L. Morawietz (Eds.), proceedings of the 2nd EEVC, p85-97. Dresden: Expert verlag.

Efremov, I. S., Prolyguin, A. P., Andreev, Yu.M., Mindlin, A.B. (1984). Theory an calculation of the electric motorcar draught drive. Traction power DC machines, p 68 - 83. Мoscow, CT: Vysshaya shkola.

Larminie, J., Lowry, J. (2003). Electric Vehicle Techology Explained. Electric Vehicle Modelling (pp. 183 – 196). Chichester, CT: John Wiley & Sons Ltd.

Guzzella, L., Sciarretta, A. (2005). Vehicle propulsion systems. Introduction to modelling and optimization. Models of Electric and Hybrid-Electric Propulsion Vehicle Systems, p68 – 101. Berlin, CT: Springer-Verlag.

Dhameja, S. (2002). Electric Vehicles Battery Systems. Electric Vehicle Battery Capacity, p43 – 53. Boston, CT: Newnes.

Effectiveness of Supercapacitors as Power-Assist in Pure EV Using a Sodium-Nickel Chloride Battery as Main Energy Storage. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. Available : http:// www.elkraft.ntnu.no/eno/Papers2009/EVS24_final_paper-giuseppe.pdf/

Burke, A. (2000). Ultracapacitors: why, how and where is the technology. Journal of power sources, 91, 37-50.

Anosov, V. N., Kaveshnikov, V. M., Orel, A. V. (2008). Analysis of changes in the discharge capacity of the accumulator battery. Transport: science, technique, control, 6, 33 – 36.

Lvovich, Ya. Е., Frolov, V.N. (1986). Theoretical bases of designing, technology and reliability of radio-electronic equipment. Processing of the experimental data by regression analysis (pp. 79-84). Moscow, CT: Radio and svyaz.

Busyguin, B. P. (1979). Electric motorcars (Calculation methods). Evaluation of electric vehicles and the analysis of their profiles, p52-67. Moscow, CT : МАDI.


GOST Style Citations








Copyright (c) 2014 Николай Иванович Слипченко, Виктор Александрович Письменецкий, Михаил Юрьевич Гуртовой, Вера Олеговна Махлова

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061