Properties of continuous functions on a compact
DOI:
https://doi.org/10.15587/1729-4061.2013.16341Keywords:
continuous functions, compactness, The Weierstrass theorem, The Cauchy theoremAbstract
The work deals with the definition of a continuous function, definitions of a continuous function by Cauchy, Heine, in the increment language.
The properties of continuous functions on a compact (on an interval) have been studied comprehensively. The 1st and the 2nd Weierstrass theorems, the 1st and the 2nd Cauchy theorems are presented, as well as the main corollaries of them.
The proofs of theorems and corollaries are presented step by step. Sequentially compact sets are important because continuous functions defined on sequentially compact sets have some very useful properties, which they do not have in general when defined on non-compact sets
References
Архипов, Г. И. Лекции по математическому анализу [Текст] / Г. И. Архипов, В. А. Садовничий, В. Н. Чубариков. – Москва, 1999.
Белько, И. В. Высшая математика для экономистов. Я семестр [Текст]: экспресс-курс / И. В. Белько, К. К. Кузьмич. – М: Новое знание, 2002. – 140 с.
Кремер, Н. Ш. Высшая математика для экономистов [Текст]: учебник для вузов / Н. Ш. Кремер, Б. А. Путко, И. М. Тришин, М. Н. Фридман; под ред. проф. Н. Ш. Кремер. – М:. ЕДИНСТВА, 2002. – 471 с.
Гусак, А. А. Высшая математика. [Текст]: учебник для студентов вузов / А. А. Гусак. – В 2 томах, Т. 2. – Mn, 1998. – 448 р.
Зайцев, И. А. Высшая математика [Текст] / И. А. Зайцев. – Дрофа, 2005. – 400 с.
Гусак, А. А. Математического анализа и дифференциальных уравнений [Текст] / А. А. Гусак. – M:. Tetra Systems, 1998. – 416 с.
Михеев, В. И. Высшая математика. [Текст] / В. И. Михеев, Ю. В. Павлюченкою. – Pub: Физматлит, 2007. – 200 с.
Колмогоров, А. Н. Элементы теории функций и функционального анализа [Текст] / А. Н. Колмогоров, С. В. Фомин. – Москва, 1960.
Мироненко, Е. С. Высшая математика [Текст] / Е. С. Мироненко, С. А. Розанова и др.; под ред. С. А. Розанова, Т. А. Кузнецова. – Pub: Физматлит, 2009. – 168 с.
Яблонский, А. И. Высшая математика. Руководящий принцип [Текст]: учебное пособие / А. И. Яблонский, А. В. Кузнецов, Е. И. Шилкина и др.; под общей ред. С. А. Самал. – M:. Высшая школа, 2000.– 351 с.
Arkhipov, G. I., Sadovnichy, V. A., Chubarikov, V. N. (1999). Lectures on mathematical analysis. Moscow.
Belko, I. V., Kuzmich, K. K. (2002). Higher mathematics for economists. I semester: Express-course. М.: Novoe znanie, 140 p.
Kremer, N. Sh., Putko, B. A., Trishin, I. M., Fridman, M. N.; In: Kremer, N. Sh. (2002). Higher mathematics for economists: Textbook for universities. М.: UNITY, 471 p.
Gusak, A. A. (1998). Higher mathematics. Textbook for students of universities in 2 volumes. Mn., 2 vol, 448 p.
Zaytsev I. A. (2005). Higher mathematics. DROFA, 400 p.
Gusak, A. A. (1998). Mathematical analysis and differential equations. Mn.: TetraSystems, 416 p.
Mikheev, V. I., Pavlyuchenko, Yu. V. (2007). Higher mathematics. Pub: FIZMATLIT, 200p.
Kolmogorov, A. N., Fomin, S. V. (1960). Elements of the theory of functions and functional analysis. Moscow.
Mironenko, E. S., Rozanova, S. A., and others; In: Rozanova, S. A., Kuznetsova, T. A. (2009). Higher mathematics. Pub.: FIZMATLIT, 168p.
Yablonsky, A. I., Kuznetsov, A. V., Shilkina, E. I. and others; In: Samal, S.A. (2000). Higher mathematics. Guideline: Manual / Under the general editorship of . Mn.: Vysshaya shkola, 351 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Dheaa Kamel Hussain Al-Janabi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the CREATIVE COMMONS copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons Attribution License, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.