DOI: https://doi.org/10.15587/1729-4061.2019.164791

Determining efficient values for the thermophysical properties of bulk materials

Anton Karvatskii, Yevgen Panov, Gennadiy Vasylchenko, Victor Vytvytskyi, Kateryna Korolenko

Abstract


A procedure has been devised for determining the effective thermophysical properties of bulk materials with different granulometric and material composition, based on the integration of discrete and continuous models of media. The problem on the mechanical-thermal state of a cylindrical layer of bulk material has been stated in order to determine its effective thermophysical properties. Based on the discrete-continuous perceptions of bulk media, an approach has been suggested and a procedure has been devised for solving the problem set. The algorithm for determining effective values of thermophysical properties of bulk materials has been constructed. Numerical implementation of the developed procedure was performed using free open source software (LIGGGHTS, ParaView). The proposed procedure makes it possible to determine effective values for the thermophysical properties of a bulk material (bulk density, effective thermal conductivity coefficient and the effective value for isobaric mass heat capacity) with arbitrary material and granulometric composition. In this case, there is a need for a minimum volume of complex and costly experimental studies with subsequent numerical simulation of the process of the mechanical-thermal state of the examined bulk material. In this case, the true physical properties can be acquired from reference books. Using an example of model material, its effective thermophysical properties have been defined for different granulometric composition and the verification of the developed procedure has been performed. It was established that data on the effective thermal conductivity calculation based on the devised procedure differ from data obtained based on the theoretical averaged dependences, within 0.8‒9.0 %. The reported results are useful for numerical analysis in the continual approximation of thermal modes of the processes and equipment where bulk materials are used

Keywords


bulk material; discrete and continual model; effective thermophysical properties; material and granulometric composition

References


Chung, D. D. L. (2010). Composite Materials: Science and Applications. Springer, 349. doi: https://doi.org/10.1007/978-1-84882-831-5

Mikulenok, I. O. (2012). Klassifikaciya termoplasticheskih kompozicionnyh materialov i ih napolniteley. Plasticheskie massy, 9, 29–38.

Mikulenok, I. O. (2013). Determining the Thermophysical Properties of Thermoplastic Composite Materials. International Polymer Science and Technology, 40 (9), 23–28. doi: https://doi.org/10.1177/0307174x1304000905

Yaws, C. L. (1999). Chemical properties handbook: physical, thermodynamic, environmental, transport, and health related properties for organic and inorganic chemicals. New York: The McGraw-Hill Companies, 779.

Piven', A. N., Novikov, V. V. (1989). Metody rascheta teplo- i temperaturoprovodnosti polimernyh materialov. Kyiv: UMK VO, 108.

Lipatov, Yu. S. (Ed.) (1986). Fizikohimiya mnogokomponentnyh polimernyh sistem. Vol. 1-2. Napolnennye polimery. Polimernye smesi i splavy. Kyiv: Nauk. dumka, 376, 384.

Djellal, L., Bouguelia, A., Trari, M. (2008). Physical and photoelectrochemical properties of p-CuInSe2 bulk material. Materials Chemistry and Physics, 109 (1), 99–104. doi: https://doi.org/10.1016/j.matchemphys.2007.10.038

Katter, M., Zellmann, V., Reppel, G. W., Uestuener, K. (2008). Magnetocaloric Properties of La(Fe, Co, Si)13 Bulk Material Prepared by Powder Metallurgy. IEEE Transactions on Magnetics, 44 (11), 3044–3047. doi: https://doi.org/10.1109/tmag.2008.2002523

Kleinke, H. (2010). New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides. Chemistry of Materials, 22 (3), 604–611. doi: https://doi.org/10.1021/cm901591d

Zehetbauer, M. J., Zhu, Y. T. (Eds.) (2009). Bulk Nanostructured Materials. Wiley, 736. doi: https://doi.org/10.1002/9783527626892

Valiev, R. Z., Zhilyaev, A. P., Langdon, T. G. (2014). Bulk Nanostructured Materials: Fundamentals and Applications. Wiley, 470. doi: https://doi.org/10.1002/9781118742679

Karvatskii, A. Y., Vasilchenko, G. M., Panov, E. M., Leleka, S. V., Lazariev, T. V., Pedchenko, A. Y., Chirka, T. V. (2019). Thermoelectric Properties of Granular Carbon Materials. Advanced Thermoelectric Materials, 437–467. doi: https://doi.org/10.1002/9781119407348.ch10

Karvatskii, A. Ya., Vasilchenko, G. M., Korolenko, K. M., Chirka, T. V. (2017). Renewal of thermal and physical properties of granular materials using the inverse heat conduction problem solution. Visnyk Khmelnytskoho natsionalnoho universytetu. Seriya: Tekhnichni nauky, 4, 159–166.

Göncü, F. (2012). Mechanics of granular materials: constitutive behavior and pattern transformation. Ipskamp Drukkers, 144.

Rao, K. K., Nott, P. R. (2008). An Introduction to Granular Flow. New York: Cambridge University Press, 490. doi: https://doi.org/10.1017/cbo9780511611513

Pöschel, T., Schwager, T. (2005). Computational granular dynamics. Models and algorithms. Springer, 322. doi: https://doi.org/10.1007/3-540-27720-x

Ai, J., Chen, J.-F., Rotter, J. M., Ooi, J. Y. (2011). Assessment of rolling resistance models in discrete element simulations. Powder Technology, 206 (3), 269–282. doi: https://doi.org/10.1016/j.powtec.2010.09.030

Makse, H. A., Gland, N., Johnson, D. L., Schwartz, L. (2004). Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics. Physical Review E, 70 (6). doi: https://doi.org/10.1103/physreve.70.061302

Karvatskii, A. Y., Lazarev, T. V. (2014). Evaluation of the Discrete Element Method for Predicting the Behavior of Granular Media Using Petroleum Coke as an Example. Chemical and Petroleum Engineering, 50 (3-4), 186–192. doi: https://doi.org/10.1007/s10556-014-9877-y

Chaudhuri, B., Muzzio, F. J., Tomassone, M. S. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science, 61 (19). 6348–6360. doi: https://doi.org/10.1016/j.ces.2006.05.034

Lykov, V. I. (1967). Teoriya teploprovodnosti. Moscow: Vysshaya shkola, 600.

LIGGGHTS Open Source Discrete Element Method Particle Simulation Code. Available at: https://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-simulation-code

ParaView. An open-source, multi-platform data analysis and visualization application. Available at: http://www.paraview.org/

Zamotrinskaya, E. A., Nesterov, V. M., Mihaylova, T. S. (1976). Ob elektroprovodnosti smesey, soderzhashchih komponenty s bol'shoy provodimost'yu. Izvestiya vuzov. Fizika, 9, 117–119.

Dul'nev, G. N., Zarichnyak, Yu. P. (1974). Teploprovodnost' smesey i kompozicionnyh materialov. Leningrad: Energiya, 264.

Grigor'ev, I. S., Meylihov, E. Z. (Eds.) (1991). Fizicheskie velichiny. Moscow: Energoatomizdat, 1232.

Kutuzov, S. V., Buryak, V. V., Derkach, V. V., Panov, E. N., Karvatskii, A. Y., Vasil’chenko, G. N. et. al. (2014). Making the Heat-Insulating Charge of Acheson Graphitization Furnaces More Efficient. Refractories and Industrial Ceramics, 55 (1), 15–16. doi: https://doi.org/10.1007/s11148-014-9648-5

Karvatskii, A., Leleka, S., Pedchenko, A., Lazariev, T. (2016). Numerical analysis of the physical fields in the process of electrode blanks graphitization in the castner furnace. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 19–25. doi: https://doi.org/10.15587/1729-4061.2016.83191


GOST Style Citations


Chung D. D. L. Composite Materials: Science and Applications. Springer, 2010. 349 p. doi: https://doi.org/10.1007/978-1-84882-831-5 

Mikulenok I. O. Klassifikaciya termoplasticheskih kompozicionnyh materialov i ih napolniteley // Plasticheskie massy. 2012. Issue 9. P. 29–38.

Mikulenok I. O. Determining the Thermophysical Properties of Thermoplastic Composite Materials // International Polymer Science and Technology. 2013. Vol. 40, Issue 9. P. 23–28. doi: https://doi.org/10.1177/0307174x1304000905 

Yaws C. L. Chemical properties handbook: physical, thermodynamic, environmental, transport, and health related properties for organic and inorganic chemicals. New York: The McGraw-Hill Companies, 1999. 779 p.

Piven' A. N., Novikov V. V. Metody rascheta teplo- i temperaturoprovodnosti polimernyh materialov. Kyiv: UMK VO, 1989. 108 p.

Fizikohimiya mnogokomponentnyh polimernyh sistem. Vol. 1-2. Napolnennye polimery. Polimernye smesi i splavy / Yu. S. Lipatov (Ed.). Kyiv: Nauk. dumka, 1986. 376 p., 384 p.

Djellal L., Bouguelia A., Trari M. Physical and photoelectrochemical properties of p-CuInSe2 bulk material // Materials Chemistry and Physics. 2008. Vol. 109, Issue 1. P. 99–104. doi: https://doi.org/10.1016/j.matchemphys.2007.10.038 

Magnetocaloric Properties of La(Fe, Co, Si)13 Bulk Material Prepared by Powder Metallurgy / Katter M., Zellmann V., Reppel G. W., Uestuener K. // IEEE Transactions on Magnetics. 2008. Vol. 44, Issue 11. P. 3044–3047. doi: https://doi.org/10.1109/tmag.2008.2002523 

Kleinke H. New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides // Chemistry of Materials. 2010. Vol. 22, Issue 3. P. 604–611. doi: https://doi.org/10.1021/cm901591d 

Bulk Nanostructured Materials / M. J. Zehetbauer, Y. T. Zhu (Eds.). Wiley, 2009. 736 p. doi: https://doi.org/10.1002/9783527626892 

Valiev R. Z., Zhilyaev A. P., Langdon T. G. Bulk Nanostructured Materials: Fundamentals and Applications. Wiley, 2014. 470 p. doi: https://doi.org/10.1002/9781118742679 

Thermoelectric Properties of Granular Carbon Materials / Karvatskii A. Y., Vasilchenko G. M., Panov E. M., Leleka S. V., Lazariev T. V., Pedchenko A. Y., Chirka T. V. // Advanced Thermoelectric Materials. 2019. P. 437–467. doi: https://doi.org/10.1002/9781119407348.ch10 

Renewal of thermal and physical properties of granular materials using the inverse heat conduction problem solution / Karvatskii A. Ya., Vasilchenko G. M., Korolenko K. M., Chirka T. V. // Visnyk Khmelnytskoho natsionalnoho universytetu. Seriya: Tekhnichni nauky. 2017. Issue 4. P. 159–166.

Göncü F. Mechanics of granular materials: constitutive behavior and pattern transformation. Ipskamp Drukkers, 2012. 144 p.

Rao K. K., Nott P. R. An Introduction to Granular Flow. New York: Cambridge University Press, 2008. 490 p. doi: https://doi.org/10.1017/cbo9780511611513 

Pöschel T., Schwager T. Computational granular dynamics. Models and algorithms. Springer, 2005. 322 p. doi: https://doi.org/10.1007/3-540-27720-x 

Assessment of rolling resistance models in discrete element simulations / Ai J., Chen J.-F., Rotter J. M., Ooi J. Y. // Powder Technology. 2011. Vol. 206, Issue 3. P. 269–282. doi: https://doi.org/10.1016/j.powtec.2010.09.030 

Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics / Makse H. A., Gland N., Johnson D. L., Schwartz L. // Physical Review E. 2004. Vol. 70, Issue 6. doi: https://doi.org/10.1103/physreve.70.061302 

Karvatskii A. Y., Lazarev T. V. Evaluation of the Discrete Element Method for Predicting the Behavior of Granular Media Using Petroleum Coke as an Example // Chemical and Petroleum Engineering. 2014. Vol. 50, Issue 3-4. P. 186–192. doi: https://doi.org/10.1007/s10556-014-9877-y 

Chaudhuri B., Muzzio F. J., Tomassone M. S. Modeling of heat transfer in granular flow in rotating vessels // Chemical Engineering Science. 2006. Vol. 61, Issue 19. P. 6348–6360. doi: https://doi.org/10.1016/j.ces.2006.05.034 

Lykov V. I. Teoriya teploprovodnosti. Moscow: Vysshaya shkola, 1967. 600 p.

LIGGGHTS Open Source Discrete Element Method Particle Simulation Code. URL: https://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-simulation-code

ParaView. An open-source, multi-platform data analysis and visualization application. URL: http://www.paraview.org/

Zamotrinskaya E. A., Nesterov V. M., Mihaylova T. S. Ob elektroprovodnosti smesey, soderzhashchih komponenty s bol'shoy provodimost'yu // Izvestiya vuzov. Fizika. 1979. Issue 9. P. 117–119.

Dul'nev G. N., Zarichnyak Yu. P. Teploprovodnost' smesey i kompozicionnyh materialov. Leningrad: Energiya, 1974. 264 p.

Fizicheskie velichiny: spravochnik / I. S. Grigor'ev, E. Z. Meylihov (Eds.). Moscow: Energoatomizdat, 1991. 1232 p.

Making the Heat-Insulating Charge of Acheson Graphitization Furnaces More Efficient / Kutuzov S. V., Buryak V. V., Derkach V. V., Panov E. N., Karvatskii A. Y., Vasil’chenko G. N. et. al. // Refractories and Industrial Ceramics. 2014. Vol. 55, Issue 1. P. 15–16. doi: https://doi.org/10.1007/s11148-014-9648-5 

Numerical analysis of the physical fields in the process of electrode blanks graphitization in the castner furnace / Karvatskii A., Leleka S., Pedchenko A., Lazariev T. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 6, Issue 5 (84). P. 19–25. doi: https://doi.org/10.15587/1729-4061.2016.83191 







Copyright (c) 2019 Anton Karvatskii, Yevgen Panov, Gennadiy Vasylchenko, Victor Vytvytskyi, Kateryna Korolenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061