Determining efficient values for the thermophysical properties of bulk materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.164791

Keywords:

bulk material, discrete and continual model, effective thermophysical properties, material and granulometric composition

Abstract

A procedure has been devised for determining the effective thermophysical properties of bulk materials with different granulometric and material composition, based on the integration of discrete and continuous models of media. The problem on the mechanical-thermal state of a cylindrical layer of bulk material has been stated in order to determine its effective thermophysical properties. Based on the discrete-continuous perceptions of bulk media, an approach has been suggested and a procedure has been devised for solving the problem set. The algorithm for determining effective values of thermophysical properties of bulk materials has been constructed. Numerical implementation of the developed procedure was performed using free open source software (LIGGGHTS, ParaView). The proposed procedure makes it possible to determine effective values for the thermophysical properties of a bulk material (bulk density, effective thermal conductivity coefficient and the effective value for isobaric mass heat capacity) with arbitrary material and granulometric composition. In this case, there is a need for a minimum volume of complex and costly experimental studies with subsequent numerical simulation of the process of the mechanical-thermal state of the examined bulk material. In this case, the true physical properties can be acquired from reference books. Using an example of model material, its effective thermophysical properties have been defined for different granulometric composition and the verification of the developed procedure has been performed. It was established that data on the effective thermal conductivity calculation based on the devised procedure differ from data obtained based on the theoretical averaged dependences, within 0.8‒9.0 %. The reported results are useful for numerical analysis in the continual approximation of thermal modes of the processes and equipment where bulk materials are used

Author Biographies

Anton Karvatskii, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Chemical, Polymeric and Silicate Mechanical Engineering

Yevgen Panov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Chemical, Polymeric and Silicate Mechanical Engineering

Gennadiy Vasylchenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Chemical, Polymeric and Silicate Mechanical Engineering

Victor Vytvytskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate Student

Department of Chemical, Polymeric and Silicate Mechanical Engineering

Kateryna Korolenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Chemical, Polymeric and Silicate Mechanical Engineering

References

  1. Chung, D. D. L. (2010). Composite Materials: Science and Applications. Springer, 349. doi: https://doi.org/10.1007/978-1-84882-831-5
  2. Mikulenok, I. O. (2012). Klassifikaciya termoplasticheskih kompozicionnyh materialov i ih napolniteley. Plasticheskie massy, 9, 29–38.
  3. Mikulenok, I. O. (2013). Determining the Thermophysical Properties of Thermoplastic Composite Materials. International Polymer Science and Technology, 40 (9), 23–28. doi: https://doi.org/10.1177/0307174x1304000905
  4. Yaws, C. L. (1999). Chemical properties handbook: physical, thermodynamic, environmental, transport, and health related properties for organic and inorganic chemicals. New York: The McGraw-Hill Companies, 779.
  5. Piven', A. N., Novikov, V. V. (1989). Metody rascheta teplo- i temperaturoprovodnosti polimernyh materialov. Kyiv: UMK VO, 108.
  6. Lipatov, Yu. S. (Ed.) (1986). Fizikohimiya mnogokomponentnyh polimernyh sistem. Vol. 1-2. Napolnennye polimery. Polimernye smesi i splavy. Kyiv: Nauk. dumka, 376, 384.
  7. Djellal, L., Bouguelia, A., Trari, M. (2008). Physical and photoelectrochemical properties of p-CuInSe2 bulk material. Materials Chemistry and Physics, 109 (1), 99–104. doi: https://doi.org/10.1016/j.matchemphys.2007.10.038
  8. Katter, M., Zellmann, V., Reppel, G. W., Uestuener, K. (2008). Magnetocaloric Properties of La(Fe, Co, Si)13 Bulk Material Prepared by Powder Metallurgy. IEEE Transactions on Magnetics, 44 (11), 3044–3047. doi: https://doi.org/10.1109/tmag.2008.2002523
  9. Kleinke, H. (2010). New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides. Chemistry of Materials, 22 (3), 604–611. doi: https://doi.org/10.1021/cm901591d
  10. Zehetbauer, M. J., Zhu, Y. T. (Eds.) (2009). Bulk Nanostructured Materials. Wiley, 736. doi: https://doi.org/10.1002/9783527626892
  11. Valiev, R. Z., Zhilyaev, A. P., Langdon, T. G. (2014). Bulk Nanostructured Materials: Fundamentals and Applications. Wiley, 470. doi: https://doi.org/10.1002/9781118742679
  12. Karvatskii, A. Y., Vasilchenko, G. M., Panov, E. M., Leleka, S. V., Lazariev, T. V., Pedchenko, A. Y., Chirka, T. V. (2019). Thermoelectric Properties of Granular Carbon Materials. Advanced Thermoelectric Materials, 437–467. doi: https://doi.org/10.1002/9781119407348.ch10
  13. Karvatskii, A. Ya., Vasilchenko, G. M., Korolenko, K. M., Chirka, T. V. (2017). Renewal of thermal and physical properties of granular materials using the inverse heat conduction problem solution. Visnyk Khmelnytskoho natsionalnoho universytetu. Seriya: Tekhnichni nauky, 4, 159–166.
  14. Göncü, F. (2012). Mechanics of granular materials: constitutive behavior and pattern transformation. Ipskamp Drukkers, 144.
  15. Rao, K. K., Nott, P. R. (2008). An Introduction to Granular Flow. New York: Cambridge University Press, 490. doi: https://doi.org/10.1017/cbo9780511611513
  16. Pöschel, T., Schwager, T. (2005). Computational granular dynamics. Models and algorithms. Springer, 322. doi: https://doi.org/10.1007/3-540-27720-x
  17. Ai, J., Chen, J.-F., Rotter, J. M., Ooi, J. Y. (2011). Assessment of rolling resistance models in discrete element simulations. Powder Technology, 206 (3), 269–282. doi: https://doi.org/10.1016/j.powtec.2010.09.030
  18. Makse, H. A., Gland, N., Johnson, D. L., Schwartz, L. (2004). Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics. Physical Review E, 70 (6). doi: https://doi.org/10.1103/physreve.70.061302
  19. Karvatskii, A. Y., Lazarev, T. V. (2014). Evaluation of the Discrete Element Method for Predicting the Behavior of Granular Media Using Petroleum Coke as an Example. Chemical and Petroleum Engineering, 50 (3-4), 186–192. doi: https://doi.org/10.1007/s10556-014-9877-y
  20. Chaudhuri, B., Muzzio, F. J., Tomassone, M. S. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science, 61 (19). 6348–6360. doi: https://doi.org/10.1016/j.ces.2006.05.034
  21. Lykov, V. I. (1967). Teoriya teploprovodnosti. Moscow: Vysshaya shkola, 600.
  22. LIGGGHTS Open Source Discrete Element Method Particle Simulation Code. Available at: https://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-simulation-code
  23. ParaView. An open-source, multi-platform data analysis and visualization application. Available at: http://www.paraview.org/
  24. Zamotrinskaya, E. A., Nesterov, V. M., Mihaylova, T. S. (1976). Ob elektroprovodnosti smesey, soderzhashchih komponenty s bol'shoy provodimost'yu. Izvestiya vuzov. Fizika, 9, 117–119.
  25. Dul'nev, G. N., Zarichnyak, Yu. P. (1974). Teploprovodnost' smesey i kompozicionnyh materialov. Leningrad: Energiya, 264.
  26. Grigor'ev, I. S., Meylihov, E. Z. (Eds.) (1991). Fizicheskie velichiny. Moscow: Energoatomizdat, 1232.
  27. Kutuzov, S. V., Buryak, V. V., Derkach, V. V., Panov, E. N., Karvatskii, A. Y., Vasil’chenko, G. N. et. al. (2014). Making the Heat-Insulating Charge of Acheson Graphitization Furnaces More Efficient. Refractories and Industrial Ceramics, 55 (1), 15–16. doi: https://doi.org/10.1007/s11148-014-9648-5
  28. Karvatskii, A., Leleka, S., Pedchenko, A., Lazariev, T. (2016). Numerical analysis of the physical fields in the process of electrode blanks graphitization in the castner furnace. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 19–25. doi: https://doi.org/10.15587/1729-4061.2016.83191

Published

2019-04-24

How to Cite

Karvatskii, A., Panov, Y., Vasylchenko, G., Vytvytskyi, V., & Korolenko, K. (2019). Determining efficient values for the thermophysical properties of bulk materials. Eastern-European Journal of Enterprise Technologies, 2(5 (98), 55–62. https://doi.org/10.15587/1729-4061.2019.164791

Issue

Section

Applied physics