DOI: https://doi.org/10.15587/1729-4061.2019.164792

Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application

Vadym Kovalenko, Valerii Kotok

Abstract


Nickel hydroxides are widely used as the active material in supercapacitors. To improvise electrochemical activity, activators, namely Co and Al compounds, are introduced into the structure of nickel hydroxide. The most effective is the introduction of activators directly into the structure of nickel hydroxide. Characteristics of double Ni–Co (Ni:Co=8:1) and triple Ni–Co–Al (Ni:Co:Al=8:1:2) hydroxides, synthesized by single-stage reverse titration method were studied. Crystal structure of the samples was studied by means of X-ray diffraction analysis, thermogravimetry and differential scanning calorimetry, electrochemical characteristics were studied by means of cyclic voltammetry and galvanostatic charge-discharge cyclic in supercapacitor regime. Comparative analysis of characteristics of double Ni–Co and triple Ni–Co–Al hydroxide was conducted. By means of XRD analysis, thermogravimetry, and differential scanning calorimetry it was found that Ni–Co–Al is layered triple hydroxide with the structure of α-Ni(OH)2 with high crystallinity. Ni-Co hydroxide is double Ni–Co hydroxide with the crystal lattice of β-Ni(OH)2, in which part of Ni2+ is isostructurally substituted by Co2+, and low crystallinity. By means of cyclic voltammetry and galvanostatic charge-discharge cycling, high electrochemical activity of Ni–Co hydroxide was found. By means of cyclic voltammetry, an abnormal, α-like behavior of Ni–Co with β-Ni(OH)2 lattice was found. The electrochemical activity of triple Ni–Co–Al hydroxide was found to be significantly lower than that of double Ni–Co hydroxide (maximum specific capacities are 550.4 F/g and 741.5 F/g, respectively), despite the structure of pure layered double hydroxide and presence of two activators. A hypothesis was proposed on the poisoning of Ni–Co–Al LTH with free aluminum compounds during reverse titration synthesis

Keywords


double Ni–Co hydroxide; triple Ni–Co–Al hydroxide; layered triple hydroxide; specific capacity; supercapacitor

Full Text:

PDF

References


Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: https://doi.org/10.1098/rspa.2014.0792

Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030

Chen, J. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606. doi: https://doi.org/10.1149/1.1392522

Chen, H., Wang, J. M., Pan, T., Zhao, Y. L., Zhang, J. Q., Cao, C. N. (2005). The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. Journal of Power Sources, 143 (1-2), 243–255. doi: https://doi.org/10.1016/j.jpowsour.2004.11.041

Kamath, P. V., Dixit, M., Indira, L., Shukla, A. K., Kumar, V. G., Munichandraiah, N. (1994). Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells. Journal of The Electrochemical Society, 141 (11), 2956–2959. doi: https://doi.org/10.1149/1.2059264

Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: https://doi.org/10.1021/am403684z

Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548

Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813

Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7

Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839

Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.

Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223

Wang, Y., Zhang, D., Peng ,W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049

Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose. Journal of The Electrochemical Society, 161 (10), B201–B206. doi: https://doi.org/10.1149/2.0251410jes

Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050

Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c

Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886

Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390

Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172

Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2017). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2

Jayashree, R. S., Vishnu Kamath, P. (2001). Suppression of the α → β-nickel hydroxide transformation in concentrated alkali: Role of dissolved cations. Journal of Applied Electrochemistry, 31 (12), 1315–1320. doi: http://doi.org/10.1023/a:1013876006707

Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041

Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179–A1184. doi: https://doi.org/10.1149/1.1403731

Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68, 267–272.

Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S., Song, D. Y., Zhou, Z. X. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29 (7), 853–858. doi: https://doi.org/10.1023/a:1003537900947

Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. dio: https://doi.org/10.15587/1729-4061.2018.133465

Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699

Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004

Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 35 (6), 2539–2545. doi: https://doi.org/10.1016/j.ijhydene.2010.01.015

Qi, J., Xu, P., Lv, Z., Liu, X., Wen, A. (2008). Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized α-nickel hydroxide. Journal of Alloys and Compounds, 462 (1-2), 164–169. doi: https://doi.org/10.1016/j.jallcom.2007.07.102

Li, H., Chen, Z., Wang, Y., Zhang, J., Yan, X. (2016). Controlled synthesis and enhanced electrochemical performance of self-assembled rosette-type Ni-Al layered double hydroxide. Electrochimica Acta, 210, 15–22. doi: https://doi.org/10.1016/j.electacta.2016.05.132

Bao, J., Zhu, Y. J., Xu, Q. S., Zhuang, Y. H., Zhao, R. D., Zeng, Y. Y., Zhong, H. L. (2012). Structure and Electrochemical Performance of Cu and Al Codoped Nanometer α-Nickel Hydroxide. Advanced Materials Research, 479-481, 230–233. doi: https://doi.org/10.4028/www.scientific.net/amr.479-481.230

Huang, J., Lei, T., Wei, X., Liu, X., Liu, T., Cao, D. et. al. (2013). Effect of Al-doped β-Ni(OH)2 nanosheets on electrochemical behaviors for high performance supercapacitor application. Journal of Power Sources, 232, 370–375. doi: https://doi.org/10.1016/j.jpowsour.2013.01.081

Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770

Hu, M., Gao, X., Lei, L., Sun, Y. (2009). Behavior of a Layered Double Hydroxide under High Current Density Charge and Discharge Cycles. The Journal of Physical Chemistry C, 113 (17), 7448–7455. doi: https://doi.org/10.1021/jp808715z

Memon, J., Sun, J., Meng, D., Ouyang, W., Memon, M. A., Huang, Y. et. al. (2014). Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors. Journal of Materials Chemistry A, 2 (14), 5060. doi: https://doi.org/10.1039/c3ta14613h

Mignani, A., Ballarin, B., Giorgetti, M., Scavetta, E., Tonelli, D., Boanini E. et. al. (2013). Heterostructure of Au Nanoparticles – NiAl Layered Double Hydroxide: Electrosynthesis, Characterization, and Electrocatalytic Properties. The Journal of Physical Chemistry C, 117 (31), 16221–16230. doi: https://doi.org/10.1021/jp4033782

Vlamidis, Y., Scavetta, E., Giorgetti, M., Sangiorgi, N., Tonelli, D. (2017). Electrochemically synthesized cobalt redox active layered double hydroxides for supercapacitors development. Applied Clay Science, 143, 151–158. doi: https://doi.org/10.1016/j.clay.2017.03.031

Wang, T., Xu, W., Wang, H. (2017). Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction. Electrochimica Acta, 257, 118–127. doi: https://doi.org/10.1016/j.electacta.2017.10.074

Martins, P. R., Ferreira, L. M. C., Araki, K., Angnes, L. (2014). Influence of cobalt content on nanostructured alpha-phase-nickel hydroxide modified electrodes for electrocatalytic oxidation of isoniazid. Sensors and Actuators B: Chemical, 192, 601–606. doi: https://doi.org/10.1016/j.snb.2013.11.029

Lamiel, C., Nguyen, V. H., Hussain, I., Shim, J.-J. (2017). Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte. Energy, 140, 901–911. doi: https://doi.org/10.1016/j.energy.2017.09.035

Moazzen, E., Timofeeva, E. V., Segre, C. U. (2017). Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode. Electrochimica Acta, 258, 684–693. doi: https://doi.org/10.1016/j.electacta.2017.11.114

Delmas, C., Braconnier, J. J., Borthomieu, Y., Hagenmuller, P. (1987). New families of cobalt substituted nickel oxyhydroxides and hydroxides obtained by soft chemistry. Materials Research Bulletin, 22 (6), 741–751. doi: https://doi.org/10.1016/0025-5408(87)90027-4

Martins, P. R., Araújo Parussulo, A. L., Toma, S. H., Rocha, M. A., Toma, H. E., Araki, K. (2012). Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application. Journal of Power Sources, 218, 1–4. doi: https://doi.org/10.1016/j.jpowsour.2012.06.065

Chen, J.-C., Hsu, C.-T., Hu, C.-C. (2014). Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. Journal of Power Sources, 253, 205–213. doi: https://doi.org/10.1016/j.jpowsour.2013.12.073

Schneiderová, B., Demel, J., Zhigunov, A., Bohuslav, J., Tarábková, H., Janda, P., Lang, K. (2017). Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties. Journal of Colloid and Interface Science, 499, 138–144. doi: https://doi.org/10.1016/j.jcis.2017.03.096

Nethravathi, C., Ravishankar, N., Shivakumara, C., Rajamathi, M. (2007). Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behavior. Journal of Power Sources, 172 (2), 970–974. doi: https://doi.org/10.1016/j.jpowsour.2007.01.098

Lokhande, P. E., Panda, H. S. (2015). Synthesis and Characterization of Ni.Co(OH)2 Material for Supercapacitor Application. IARJSET, 2 (8), 10–19. doi: https://doi.org/10.17148/iarjset.2015.2903

Wang, C. Y., Zhong, S., Bradhurst, D. H., Liu, H. K, Dou, S. X. (2002). Ni/Al/Co-substituted α-Ni(OH)2 as electrode materials in the nickel metal hydride cell. Journal of Alloys and Compounds, 330-332, 802–805. doi: https://doi.org/10.1016/s0925-8388(01)01515-8

Chen, X., Long, C., Lin, C., Wei, T., Yan, J., Jiang, L., Fan, Z. (2014). Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochimica Acta, 137, 352–358. doi: https://doi.org/10.1016/j.electacta.2014.05.151

Hu, M., Ji, X., Lei, L., Lu, X. (2013). The effect of cobalt on the electrochemical performances of Ni–Al layered double hydroxides used in Ni–M(H) battery. Journal of Alloys and Compounds, 578, 17–25. doi: https://doi.org/10.1016/j.jallcom.2013.04.156

Vialat, P., Leroux, F., Mousty, C. (2015). Electrochemical properties of layered double hydroxides containing 3d metal cations. Journal of Solid State Electrochemistry, 19 (7), 1975–1983. doi: https://doi.org/10.1007/s10008-014-2671-0

Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764

Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0

Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559

Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205

Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679

Kovalenko, V., Kotok, V. (2018). “The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate. Eastern-European Journal of Enterprise Technologies, 5 (6 (95)), 12–20. doi: https://doi.org/10.15587/1729-4061.2018.143126

Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810

Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472


GOST Style Citations


Nickel hydroxides and related materials: a review of their structures, synthesis and properties / Hall D. S., Lockwood D. J., Bock C., MacDougall B. R. // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. Vol. 471, Issue 2174. P. 20140792–20140792. doi: https://doi.org/10.1098/rspa.2014.0792 

Vidotti M., Torresi R., Torresi S. I. C. de. Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries // Química Nova. 2010. Vol. 33, Issue 10. P. 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030 

Chen J. Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries // Journal of The Electrochemical Society. 1999. Vol. 146, Issue 10. P. 3606. doi: https://doi.org/10.1149/1.1392522 

The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries / Chen H., Wang J. M., Pan T., Zhao Y. L., Zhang J. Q., Cao C. N. // Journal of Power Sources. 2005. Vol. 143, Issue 1-2. P. 243–255. doi: https://doi.org/10.1016/j.jpowsour.2004.11.041 

Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells / Kamath P. V., Dixit M., Indira L., Shukla A. K., Kumar V. G., Munichandraiah N. // Journal of The Electrochemical Society. 1994. Vol. 141, Issue 11. P. 2956–2959. doi: https://doi.org/10.1149/1.2059264 

Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries / Sun Y.-K., Lee D.-J., Lee Y. J., Chen Z., Myung S.-T. // ACS Applied Materials & Interfaces. 2013. Vol. 5, Issue 21. P. 11434–11440. doi: https://doi.org/10.1021/am403684z 

Kovalenko V., Kotok V. Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 12 (93). P. 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548 

Kovalenko V., Kotok V. Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 6 (88). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813 

Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route / Zheng C., Liu X., Chen Z., Wu Z., Fang D. // Journal of Central South University. 2014. Vol. 21, Issue 7. P. 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7 

Kotok V., Kovalenko V. The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 12 (88). P. 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839 

Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis / Kotok V. A., Kovalenko V. L., Solovov V. A., Kovalenko P. V., Ananchenko B. A. // ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13, Issue 9. P. 3076–3086.

Kotok V., Kovalenko V. A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 5, Issue 12 (95). P. 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223 

Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium / Wang Y., Zhang D., Peng W., Liu L., Li M. // Electrochimica Acta. 2011. Vol. 56, Issue 16. P. 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049 

Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose / Fan Y., Yang Z., Cao X., Liu P., Chen S., Cao Z. // Journal of The Electrochemical Society. 2014. Vol. 161, Issue 10. P. B201–B206. doi: https://doi.org/10.1149/2.0251410jes 

Ramesh T. N., Kamath P. V. Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder // Journal of Power Sources. 2006. Vol. 156, Issue 2. P. 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050 

Rajamathi M., Vishnu Kamath P., Seshadri R. Polymorphism in nickel hydroxide: role of interstratification // Journal of Materials Chemistry. 2000. Vol. 10, Issue 2. P. 503–506. doi: https://doi.org/10.1039/a905651c 

Kovalenko V., Kotok V. Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2 // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 6 (92). P. 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886 

Kovalenko V., Kotok V. Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 6 (89). P. 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390 

A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application / Li J., Luo F., Tian X., Lei Y., Yuan H., Xiao D. // Journal of Power Sources. 2013. Vol. 243. P. 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172 

Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications / Kovalenko V. L., Kotok V. A., Sykchin A. A., Mudryi I. A., Ananchenko B. A., Burkov A. A. et. al. // Journal of Solid State Electrochemistry. 2017. Vol. 21, Issue 3. P. 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2 

Jayashree R. S., Vishnu Kamath P. Suppression of the α → β-nickel hydroxide transformation in concentrated alkali: Role of dissolved cations // Journal of Applied Electrochemistry. 2001. Vol. 31, Issue 12. P. 1315–1320. doi: http://doi.org/10.1023/a:1013876006707

Structural transformation and its effects on the electrochemical performances of a layered double hydroxide / Hu M., Yang Z., Lei L., Sun Y. // Journal of Power Sources. 2011. Vol. 196, Issue 3. P. 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041 

Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes / Córdoba de Torresi S. I., Provazi K., Malta M., Torresi R. M. // Journal of The Electrochemical Society. 2001. Vol. 148, Issue 10. P. A1179–A1184. doi: https://doi.org/10.1149/1.1403731 

Layered double hydroxides: A review / Nalawade P., Aware B., Kadam V. J., Hirlekar R. S. // Journal of Scientific & Industrial Research. 2009. Vol. 68. P. 267–272.

Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide / Liu B., Wang X. Y., Yuan H. T., Zhang Y. S., Song D. Y., Zhou Z. X. // Journal of Applied Electrochemistry. 1999. Vol. 29, Issue 7. P. 853–858. doi: https://doi.org/10.1023/a:1003537900947

Kotok V., Kovalenko V., Vlasov S. Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 6 (93). P. 6–11. dio: https://doi.org/10.15587/1729-4061.2018.133465 

Kovalenko V., Kotok V. Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 6 (86). P. 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699 

The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials / Lei L., Hu M., Gao X., Sun Y. // Electrochimica Acta. 2008. Vol. 54, Issue 2. P. 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004 

Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes / Li Y. W., Yao J. H., Liu C. J., Zhao W. M., Deng W. X., Zhong S. K. // International Journal of Hydrogen Energy. 2010. Vol. 35, Issue 6. P. 2539–2545. doi: https://doi.org/10.1016/j.ijhydene.2010.01.015 

Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized α-nickel hydroxide / Qi J., Xu P., Lv Z., Liu X., Wen A. // Journal of Alloys and Compounds. 2008. Vol. 462, Issue 1-2. P. 164–169. doi: https://doi.org/10.1016/j.jallcom.2007.07.102 

Controlled synthesis and enhanced electrochemical performance of self-assembled rosette-type Ni-Al layered double hydroxide / Li H., Chen Z., Wang Y., Zhang J., Yan X. // Electrochimica Acta. 2016. Vol. 210. P. 15–22. doi: https://doi.org/10.1016/j.electacta.2016.05.132 

Structure and Electrochemical Performance of Cu and Al Codoped Nanometer α-Nickel Hydroxide / Bao J., Zhu Y. J., Xu Q. S., Zhuang Y. H., Zhao R. D., Zeng Y. Y., Zhong H. L. // Advanced Materials Research. 2012. Vol. 479-481. P. 230–233. doi: https://doi.org/10.4028/www.scientific.net/amr.479-481.230 

Effect of Al-doped β-Ni(OH)2 nanosheets on electrochemical behaviors for high performance supercapacitor application / Huang J., Lei T., Wei X., Liu X., Liu T., Cao D. et. al. // Journal of Power Sources. 2013. Vol. 232. P. 370–375. doi: https://doi.org/10.1016/j.jpowsour.2013.01.081 

Kotok V., Kovalenko V., Malyshev V. Comparison of oxygen evolution parameters on different types of nickel hydroxide // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 12 (89). P. 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770 

Behavior of a Layered Double Hydroxide under High Current Density Charge and Discharge Cycles / Hu M., Gao X., Lei L., Sun Y. // The Journal of Physical Chemistry C. 2009. Vol. 113, Issue 17. P. 7448–7455. doi: https://doi.org/10.1021/jp808715z 

Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors / Memon J., Sun J., Meng D., Ouyang W., Memon M. A., Huang Y. et. al. // Journal of Materials Chemistry A. 2014. Vol. 2, Issue 14. P. 5060. doi: https://doi.org/10.1039/c3ta14613h 

Heterostructure of Au Nanoparticles – NiAl Layered Double Hydroxide: Electrosynthesis, Characterization, and Electrocatalytic Properties / Mignani A., Ballarin B., Giorgetti M., Scavetta E., Tonelli D., Boanini E. et. al. // The Journal of Physical Chemistry C. 2013. Vol. 117, Issue 31. P. 16221–16230. doi: https://doi.org/10.1021/jp4033782 

Electrochemically synthesized cobalt redox active layered double hydroxides for supercapacitors development / Vlamidis Y., Scavetta E., Giorgetti M., Sangiorgi N., Tonelli D. // Applied Clay Science. 2017. Vol. 143. P. 151–158. doi: https://doi.org/10.1016/j.clay.2017.03.031 

Wang T., Xu W., Wang H. Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction // Electrochimica Acta. 2017. Vol. 257. P. 118–127. doi: https://doi.org/10.1016/j.electacta.2017.10.074 

Influence of cobalt content on nanostructured alpha-phase-nickel hydroxide modified electrodes for electrocatalytic oxidation of isoniazid / Martins P. R., Ferreira L. M. C., Araki K., Angnes L. // Sensors and Actuators B: Chemical. 2014. Vol. 192. P. 601–606. doi: https://doi.org/10.1016/j.snb.2013.11.029 

Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte / Lamiel C., Nguyen V. H., Hussain I., Shim J.-J. // Energy. 2017. Vol. 140. P. 901–911. doi: https://doi.org/10.1016/j.energy.2017.09.035 

Moazzen E., Timofeeva E. V., Segre C. U. Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode // Electrochimica Acta. 2017. Vol. 258. P. 684–693. doi: https://doi.org/10.1016/j.electacta.2017.11.114 

New families of cobalt substituted nickel oxyhydroxides and hydroxides obtained by soft chemistry / Delmas C., Braconnier J. J., Borthomieu Y., Hagenmuller P. // Materials Research Bulletin. 1987. Vol. 22, Issue 6. P. 741–751. doi: https://doi.org/10.1016/0025-5408(87)90027-4 

Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application / Martins P. R., Araújo Parussulo A. L., Toma S. H., Rocha M. A., Toma H. E., Araki K. // Journal of Power Sources. 2012. Vol. 218. P. 1–4. doi: https://doi.org/10.1016/j.jpowsour.2012.06.065 

Chen J.-C., Hsu C.-T., Hu C.-C. Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition // Journal of Power Sources. 2014. Vol. 253. P. 205–213. doi: https://doi.org/10.1016/j.jpowsour.2013.12.073 

Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties / Schneiderová B., Demel J., Zhigunov A., Bohuslav J., Tarábková H., Janda P., Lang K. // Journal of Colloid and Interface Science. 2017. Vol. 499. P. 138–144. doi: https://doi.org/10.1016/j.jcis.2017.03.096 

Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behavior / Nethravathi C., Ravishankar N., Shivakumara C., Rajamathi M. // Journal of Power Sources. 2007. Vol. 172, Issue 2. P. 970–974. doi: https://doi.org/10.1016/j.jpowsour.2007.01.098 

Lokhande P. E., Panda H. S. Synthesis and Characterization of Ni.Co(OH)2 Material for Supercapacitor Application // IARJSET. 2015. Vol. 2, Issue 8. P. 10–19. doi: https://doi.org/10.17148/iarjset.2015.2903 

Ni/Al/Co-substituted α-Ni(OH)2 as electrode materials in the nickel metal hydride cell / Wang C. Y., Zhong S., Bradhurst D. H., Liu H. K, Dou S. X. // Journal of Alloys and Compounds. 2002. Vol. 330-332. P. 802–805. doi: https://doi.org/10.1016/s0925-8388(01)01515-8 

Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors / Chen X., Long C., Lin C., Wei T., Yan J., Jiang L., Fan Z. // Electrochimica Acta. 2014. Vol. 137. P. 352–358. doi: https://doi.org/10.1016/j.electacta.2014.05.151 

The effect of cobalt on the electrochemical performances of Ni–Al layered double hydroxides used in Ni–M(H) battery / Hu M., Ji X., Lei L., Lu X. // Journal of Alloys and Compounds. 2013. Vol. 578. P. 17–25. doi: https://doi.org/10.1016/j.jallcom.2013.04.156 

Vialat P., Leroux F., Mousty C. Electrochemical properties of layered double hydroxides containing 3d metal cations // Journal of Solid State Electrochemistry. 2015. Vol. 19, Issue 7. P. 1975–1983. doi: https://doi.org/10.1007/s10008-014-2671-0 

Kotok V., Kovalenko V. Definition of the aging process parameters for nickel hydroxide in the alkaline medium // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 2, Issue 12 (92). P. 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764 

Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers / Burmistr M. V., Boiko V. S., Lipko E. O., Gerasimenko K. O., Gomza Y. P., Vesnin R. L. et. al. // Mechanics of Composite Materials. 2014. Vol. 50, Issue 2. P. 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0 

Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis / Vlasova E., Kovalenko V., Kotok V., Vlasov S. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 5 (83). P. 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559 

Kovalenko V., Kotok V. Selective anodic treatment of W(WC)-based superalloy scrap // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 5 (85). P. 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205 

Kotok V., Kovalenko V. A study of multilayered electrochromic platings based on nickel and cobalt hydroxides // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, Issue 12 (91). P. 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679 

Kovalenko V., Kotok V. “The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 5, Issue 6 (95). P. 12–20. doi: https://doi.org/10.15587/1729-4061.2018.143126 

Kotok V., Kovalenko V. Optimization of nickel hydroxide electrode of the hybrid supercapacitor // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 6 (85). P. 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810 

Kovalenko V., Kotok V., Kovalenko I. Activation of the nickel foam as a current collector for application in supercapacitors // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 3, Issue 12 (93). P. 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472 







Copyright (c) 2019 Vadym Kovalenko, Valerii Kotok

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061