Вивчення характеристик подвійного Ni–Co І потрійного Ni–Co–Al шарових гідроксидів для використання в суперконденсаторах
DOI:
https://doi.org/10.15587/1729-4061.2019.164792Ключові слова:
подвійний Ni–Co гідроксид, потрійний Ni–Co–Al гідроксид, шаруватий потрійний гідроксид, питома ємність, суперконденсаторАнотація
Гідроксиди нікелю широко використовується як активна речовина суперконденсаторів. Для підвищення електрохімічної активності в структуру гідроксиду нікеля вводять активатори, наприклад сполуки Со та Al. Найбільш ефективним є введення активаторів безпосередньо в структуру гідроксиду нікелю. Вивчено характеристики подвійного Ni–Co (Ni:Co=8:1) та потрійного Ni–Co–Al (Ni:Co:Al=8:1:2) гідроксидів, отриманих одноступеневим зворотнім хімічним синтезом. Кристалічна структура зразків вивчена методом ренгенофазового аналізу, термогравіметрії та диференційної скануючої калориметрії, електрохімічні характеристики – методами циклічної вольтамперометрії та гальваностатичного зарядно-розрядного циклування в суперконденсаторному режимі. Проведено порівняльний аналіз характеристик зразків подвійного Ni–Co та потрійного Ni–Co–Al гідроксидів. Методами ренгенофазового аналізу, термогравіметрії і диференційної скануючої калориметрії показано, що Ni–Co–Al гідроксид є шаруватим потрійним гідроксидом зі структурою α-Ni(OH)2 високої кристалічності. Ni–Co гідроксид є подвійним гідроксидом Ni–Co (Co2+ ізоморфно заміщує Ni2+) з решіткою β-Ni(OH)2 низької кристалічності. Методом циклічної вольтамперометрії та гальваностатичного зарядно-розрядного циклювання показано високу електрохімічну активність подвійного Ni–Co гідроксиду. Методом циклічної вольтамперометрії виявлено аномальна α-поведінку Ni–Co гідроксиду з решіткою β-Ni(OH)2. Показано, що електрохімічна активність потрійного Ni-Co-Al гідроксиду суттєво нижча, ніж подвійного Ni–Co гідроксиду (максимальні питомі ємності 550,4 Ф/г и 741,5 Ф/г відповідно), незважаючи на структуру шаруватого гідроксиду та наявність двох активаторів. Висловлено обґрунтоване припущення щодо отруєння Ni–Co–Al потрійно-шарового гідроксиду сполуками алюмінію при зворотному хімічному синтезі
Посилання
- Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: https://doi.org/10.1098/rspa.2014.0792
- Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030
- Chen, J. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606. doi: https://doi.org/10.1149/1.1392522
- Chen, H., Wang, J. M., Pan, T., Zhao, Y. L., Zhang, J. Q., Cao, C. N. (2005). The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. Journal of Power Sources, 143 (1-2), 243–255. doi: https://doi.org/10.1016/j.jpowsour.2004.11.041
- Kamath, P. V., Dixit, M., Indira, L., Shukla, A. K., Kumar, V. G., Munichandraiah, N. (1994). Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells. Journal of The Electrochemical Society, 141 (11), 2956–2959. doi: https://doi.org/10.1149/1.2059264
- Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: https://doi.org/10.1021/am403684z
- Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
- Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
- Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
- Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
- Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.
- Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
- Wang, Y., Zhang, D., Peng ,W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049
- Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose. Journal of The Electrochemical Society, 161 (10), B201–B206. doi: https://doi.org/10.1149/2.0251410jes
- Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050
- Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
- Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
- Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
- Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
- Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2017). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
- Jayashree, R. S., Vishnu Kamath, P. (2001). Suppression of the α → β-nickel hydroxide transformation in concentrated alkali: Role of dissolved cations. Journal of Applied Electrochemistry, 31 (12), 1315–1320. doi: http://doi.org/10.1023/a:1013876006707
- Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041
- Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179–A1184. doi: https://doi.org/10.1149/1.1403731
- Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68, 267–272.
- Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S., Song, D. Y., Zhou, Z. X. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29 (7), 853–858. doi: https://doi.org/10.1023/a:1003537900947
- Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of NiAl hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. dio: https://doi.org/10.15587/1729-4061.2018.133465
- Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
- Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004
- Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 35 (6), 2539–2545. doi: https://doi.org/10.1016/j.ijhydene.2010.01.015
- Qi, J., Xu, P., Lv, Z., Liu, X., Wen, A. (2008). Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized α-nickel hydroxide. Journal of Alloys and Compounds, 462 (1-2), 164–169. doi: https://doi.org/10.1016/j.jallcom.2007.07.102
- Li, H., Chen, Z., Wang, Y., Zhang, J., Yan, X. (2016). Controlled synthesis and enhanced electrochemical performance of self-assembled rosette-type Ni-Al layered double hydroxide. Electrochimica Acta, 210, 15–22. doi: https://doi.org/10.1016/j.electacta.2016.05.132
- Bao, J., Zhu, Y. J., Xu, Q. S., Zhuang, Y. H., Zhao, R. D., Zeng, Y. Y., Zhong, H. L. (2012). Structure and Electrochemical Performance of Cu and Al Codoped Nanometer α-Nickel Hydroxide. Advanced Materials Research, 479-481, 230–233. doi: https://doi.org/10.4028/www.scientific.net/amr.479-481.230
- Huang, J., Lei, T., Wei, X., Liu, X., Liu, T., Cao, D. et. al. (2013). Effect of Al-doped β-Ni(OH)2 nanosheets on electrochemical behaviors for high performance supercapacitor application. Journal of Power Sources, 232, 370–375. doi: https://doi.org/10.1016/j.jpowsour.2013.01.081
- Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
- Hu, M., Gao, X., Lei, L., Sun, Y. (2009). Behavior of a Layered Double Hydroxide under High Current Density Charge and Discharge Cycles. The Journal of Physical Chemistry C, 113 (17), 7448–7455. doi: https://doi.org/10.1021/jp808715z
- Memon, J., Sun, J., Meng, D., Ouyang, W., Memon, M. A., Huang, Y. et. al. (2014). Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors. Journal of Materials Chemistry A, 2 (14), 5060. doi: https://doi.org/10.1039/c3ta14613h
- Mignani, A., Ballarin, B., Giorgetti, M., Scavetta, E., Tonelli, D., Boanini E. et. al. (2013). Heterostructure of Au Nanoparticles – NiAl Layered Double Hydroxide: Electrosynthesis, Characterization, and Electrocatalytic Properties. The Journal of Physical Chemistry C, 117 (31), 16221–16230. doi: https://doi.org/10.1021/jp4033782
- Vlamidis, Y., Scavetta, E., Giorgetti, M., Sangiorgi, N., Tonelli, D. (2017). Electrochemically synthesized cobalt redox active layered double hydroxides for supercapacitors development. Applied Clay Science, 143, 151–158. doi: https://doi.org/10.1016/j.clay.2017.03.031
- Wang, T., Xu, W., Wang, H. (2017). Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction. Electrochimica Acta, 257, 118–127. doi: https://doi.org/10.1016/j.electacta.2017.10.074
- Martins, P. R., Ferreira, L. M. C., Araki, K., Angnes, L. (2014). Influence of cobalt content on nanostructured alpha-phase-nickel hydroxide modified electrodes for electrocatalytic oxidation of isoniazid. Sensors and Actuators B: Chemical, 192, 601–606. doi: https://doi.org/10.1016/j.snb.2013.11.029
- Lamiel, C., Nguyen, V. H., Hussain, I., Shim, J.-J. (2017). Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte. Energy, 140, 901–911. doi: https://doi.org/10.1016/j.energy.2017.09.035
- Moazzen, E., Timofeeva, E. V., Segre, C. U. (2017). Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode. Electrochimica Acta, 258, 684–693. doi: https://doi.org/10.1016/j.electacta.2017.11.114
- Delmas, C., Braconnier, J. J., Borthomieu, Y., Hagenmuller, P. (1987). New families of cobalt substituted nickel oxyhydroxides and hydroxides obtained by soft chemistry. Materials Research Bulletin, 22 (6), 741–751. doi: https://doi.org/10.1016/0025-5408(87)90027-4
- Martins, P. R., Araújo Parussulo, A. L., Toma, S. H., Rocha, M. A., Toma, H. E., Araki, K. (2012). Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application. Journal of Power Sources, 218, 1–4. doi: https://doi.org/10.1016/j.jpowsour.2012.06.065
- Chen, J.-C., Hsu, C.-T., Hu, C.-C. (2014). Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. Journal of Power Sources, 253, 205–213. doi: https://doi.org/10.1016/j.jpowsour.2013.12.073
- Schneiderová, B., Demel, J., Zhigunov, A., Bohuslav, J., Tarábková, H., Janda, P., Lang, K. (2017). Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties. Journal of Colloid and Interface Science, 499, 138–144. doi: https://doi.org/10.1016/j.jcis.2017.03.096
- Nethravathi, C., Ravishankar, N., Shivakumara, C., Rajamathi, M. (2007). Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behavior. Journal of Power Sources, 172 (2), 970–974. doi: https://doi.org/10.1016/j.jpowsour.2007.01.098
- Lokhande, P. E., Panda, H. S. (2015). Synthesis and Characterization of Ni.Co(OH)2 Material for Supercapacitor Application. IARJSET, 2 (8), 10–19. doi: https://doi.org/10.17148/iarjset.2015.2903
- Wang, C. Y., Zhong, S., Bradhurst, D. H., Liu, H. K, Dou, S. X. (2002). Ni/Al/Co-substituted α-Ni(OH)2 as electrode materials in the nickel metal hydride cell. Journal of Alloys and Compounds, 330-332, 802–805. doi: https://doi.org/10.1016/s0925-8388(01)01515-8
- Chen, X., Long, C., Lin, C., Wei, T., Yan, J., Jiang, L., Fan, Z. (2014). Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochimica Acta, 137, 352–358. doi: https://doi.org/10.1016/j.electacta.2014.05.151
- Hu, M., Ji, X., Lei, L., Lu, X. (2013). The effect of cobalt on the electrochemical performances of Ni–Al layered double hydroxides used in Ni–M(H) battery. Journal of Alloys and Compounds, 578, 17–25. doi: https://doi.org/10.1016/j.jallcom.2013.04.156
- Vialat, P., Leroux, F., Mousty, C. (2015). Electrochemical properties of layered double hydroxides containing 3d metal cations. Journal of Solid State Electrochemistry, 19 (7), 1975–1983. doi: https://doi.org/10.1007/s10008-014-2671-0
- Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
- Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
- Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
- Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
- Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
- Kovalenko, V., Kotok, V. (2018). “The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate. Eastern-European Journal of Enterprise Technologies, 5 (6 (95)), 12–20. doi: https://doi.org/10.15587/1729-4061.2018.143126
- Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
- Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2019 Vadym Kovalenko, Valerii Kotok
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.