Вивчення характеристик подвійного Ni–Co І потрійного Ni–Co–Al шарових гідроксидів для використання в суперконденсаторах

Автор(и)

  • Vadym Kovalenko Український державний хіміко-технологічний університет пр. Гагаріна, 8, м. Дніпро, Україна, 49005 В’ятський державний університет вул. Московська, 36, м. Кіров, Російська Федерація, 610000, Україна https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Український державний хіміко-технологічний університет пр. Гагаріна, 8, м. Дніпро, Україна, 49005 В’ятський державний університет вул. Московська, 36, м. Кіров, Російська Федерація, 610000, Україна https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2019.164792

Ключові слова:

подвійний Ni–Co гідроксид, потрійний Ni–Co–Al гідроксид, шаруватий потрійний гідроксид, питома ємність, суперконденсатор

Анотація

Гідроксиди нікелю широко використовується як активна речовина суперконденсаторів. Для підвищення електрохімічної активності в структуру гідроксиду нікеля вводять активатори, наприклад сполуки Со та Al. Найбільш ефективним є введення активаторів безпосередньо в структуру гідроксиду нікелю. Вивчено характеристики подвійного Ni–Co (Ni:Co=8:1) та потрійного Ni–Co–Al (Ni:Co:Al=8:1:2) гідроксидів, отриманих одноступеневим зворотнім хімічним синтезом. Кристалічна структура зразків вивчена методом ренгенофазового аналізу, термогравіметрії та диференційної скануючої калориметрії, електрохімічні характеристики – методами циклічної вольтамперометрії та гальваностатичного зарядно-розрядного циклування в суперконденсаторному режимі. Проведено порівняльний аналіз характеристик зразків подвійного Ni–Co та потрійного Ni–Co–Al гідроксидів. Методами ренгенофазового аналізу, термогравіметрії і диференційної скануючої калориметрії показано, що Ni–Co–Al гідроксид є шаруватим потрійним гідроксидом зі структурою α-Ni(OH)2 високої кристалічності. Ni–Co гідроксид є подвійним гідроксидом Ni–Co (Co2+ ізоморфно заміщує Ni2+) з решіткою β-Ni(OH)2 низької кристалічності. Методом циклічної вольтамперометрії та гальваностатичного зарядно-розрядного циклювання показано високу електрохімічну активність подвійного Ni–Co гідроксиду. Методом циклічної вольтамперометрії виявлено аномальна α-поведінку Ni–Co гідроксиду з решіткою β-Ni(OH)2. Показано, що електрохімічна активність потрійного Ni-Co-Al гідроксиду суттєво нижча, ніж подвійного Ni–Co гідроксиду (максимальні питомі ємності 550,4 Ф/г и 741,5 Ф/г відповідно), незважаючи на структуру шаруватого гідроксиду та наявність двох активаторів. Висловлено обґрунтоване припущення щодо отруєння Ni–Co–Al потрійно-шарового гідроксиду сполуками алюмінію при зворотному хімічному синтезі

Біографії авторів

Vadym Kovalenko, Український державний хіміко-технологічний університет пр. Гагаріна, 8, м. Дніпро, Україна, 49005 В’ятський державний університет вул. Московська, 36, м. Кіров, Російська Федерація, 610000

Кандидат технічних наук, доцент

Кафедра аналітичної хімії та хімічної технології харчових добавок та косметичних засобів

Старший науковий співробітник

Центр компетенцій «Екологічні технології та системи»

Valerii Kotok, Український державний хіміко-технологічний університет пр. Гагаріна, 8, м. Дніпро, Україна, 49005 В’ятський державний університет вул. Московська, 36, м. Кіров, Російська Федерація, 610000

Кандидат технічних наук, доцент

Кафедра процесів і апаратів, та загальної хімічної технології

Старший науковий співробітник

Центр компетенцій «Екологічні технології та системи»

Посилання

  1. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2014). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792–20140792. doi: https://doi.org/10.1098/rspa.2014.0792
  2. Vidotti, M., Torresi, R., Torresi, S. I. C. de. (2010). Nickel hydroxide modified electrodes: a review study concerning its structural and electrochemical properties aiming the application in electrocatalysis, electrochromism and secondary batteries. Química Nova, 33 (10), 2176–2186. doi: https://doi.org/10.1590/s0100-40422010001000030
  3. Chen, J. (1999). Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146 (10), 3606. doi: https://doi.org/10.1149/1.1392522
  4. Chen, H., Wang, J. M., Pan, T., Zhao, Y. L., Zhang, J. Q., Cao, C. N. (2005). The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries. Journal of Power Sources, 143 (1-2), 243–255. doi: https://doi.org/10.1016/j.jpowsour.2004.11.041
  5. Kamath, P. V., Dixit, M., Indira, L., Shukla, A. K., Kumar, V. G., Munichandraiah, N. (1994). Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells. Journal of The Electrochemical Society, 141 (11), 2956–2959. doi: https://doi.org/10.1149/1.2059264
  6. Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z., Myung, S.-T. (2013). Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 5 (21), 11434–11440. doi: https://doi.org/10.1021/am403684z
  7. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  8. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  9. Zheng, C., Liu, X., Chen, Z., Wu, Z., Fang, D. (2014). Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route. Journal of Central South University, 21 (7), 2596–2603. doi: https://doi.org/10.1007/s11771-014-2218-7
  10. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
  11. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.
  12. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
  13. Wang, Y., Zhang, D., Peng ,W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: https://doi.org/10.1016/j.electacta.2011.04.049
  14. Fan, Y., Yang, Z., Cao, X., Liu, P., Chen, S., Cao, Z. (2014). Hierarchical Macro-Mesoporous Ni(OH)2 for Nonenzymatic Electrochemical Sensing of Glucose. Journal of The Electrochemical Society, 161 (10), B201–B206. doi: https://doi.org/10.1149/2.0251410jes
  15. Ramesh, T. N., Kamath, P. V. (2006). Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 156 (2), 655–661. doi: https://doi.org/10.1016/j.jpowsour.2005.05.050
  16. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
  17. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
  18. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
  19. Li, J., Luo, F., Tian, X., Lei, Y., Yuan, H., Xiao, D. (2013). A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 and its supercapacitor application. Journal of Power Sources, 243, 721–727. doi: https://doi.org/10.1016/j.jpowsour.2013.05.172
  20. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2017). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2
  21. Jayashree, R. S., Vishnu Kamath, P. (2001). Suppression of the α → β-nickel hydroxide transformation in concentrated alkali: Role of dissolved cations. Journal of Applied Electrochemistry, 31 (12), 1315–1320. doi: http://doi.org/10.1023/a:1013876006707
  22. Hu, M., Yang, Z., Lei, L., Sun, Y. (2011). Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. Journal of Power Sources, 196 (3), 1569–1577. doi: https://doi.org/10.1016/j.jpowsour.2010.08.041
  23. Córdoba de Torresi, S. I., Provazi, K., Malta, M., Torresi, R. M. (2001). Effect of Additives in the Stabilization of the α Phase of Ni(OH)2 Electrodes. Journal of The Electrochemical Society, 148 (10), A1179–A1184. doi: https://doi.org/10.1149/1.1403731
  24. Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68, 267–272.
  25. Liu, B., Wang, X. Y., Yuan, H. T., Zhang, Y. S., Song, D. Y., Zhou, Z. X. (1999). Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. Journal of Applied Electrochemistry, 29 (7), 853–858. doi: https://doi.org/10.1023/a:1003537900947
  26. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. dio: https://doi.org/10.15587/1729-4061.2018.133465
  27. Kovalenko, V., Kotok, V. (2017). Obtaining of Ni–Al layered double hydroxide by slit diaphragm electrolyzer. Eastern-European Journal of Enterprise Technologies, 2 (6 (86)), 11–17. doi: https://doi.org/10.15587/1729-4061.2017.95699
  28. Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: https://doi.org/10.1016/j.electacta.2008.07.004
  29. Li, Y. W., Yao, J. H., Liu, C. J., Zhao, W. M., Deng, W. X., Zhong, S. K. (2010). Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 35 (6), 2539–2545. doi: https://doi.org/10.1016/j.ijhydene.2010.01.015
  30. Qi, J., Xu, P., Lv, Z., Liu, X., Wen, A. (2008). Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized α-nickel hydroxide. Journal of Alloys and Compounds, 462 (1-2), 164–169. doi: https://doi.org/10.1016/j.jallcom.2007.07.102
  31. Li, H., Chen, Z., Wang, Y., Zhang, J., Yan, X. (2016). Controlled synthesis and enhanced electrochemical performance of self-assembled rosette-type Ni-Al layered double hydroxide. Electrochimica Acta, 210, 15–22. doi: https://doi.org/10.1016/j.electacta.2016.05.132
  32. Bao, J., Zhu, Y. J., Xu, Q. S., Zhuang, Y. H., Zhao, R. D., Zeng, Y. Y., Zhong, H. L. (2012). Structure and Electrochemical Performance of Cu and Al Codoped Nanometer α-Nickel Hydroxide. Advanced Materials Research, 479-481, 230–233. doi: https://doi.org/10.4028/www.scientific.net/amr.479-481.230
  33. Huang, J., Lei, T., Wei, X., Liu, X., Liu, T., Cao, D. et. al. (2013). Effect of Al-doped β-Ni(OH)2 nanosheets on electrochemical behaviors for high performance supercapacitor application. Journal of Power Sources, 232, 370–375. doi: https://doi.org/10.1016/j.jpowsour.2013.01.081
  34. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
  35. Hu, M., Gao, X., Lei, L., Sun, Y. (2009). Behavior of a Layered Double Hydroxide under High Current Density Charge and Discharge Cycles. The Journal of Physical Chemistry C, 113 (17), 7448–7455. doi: https://doi.org/10.1021/jp808715z
  36. Memon, J., Sun, J., Meng, D., Ouyang, W., Memon, M. A., Huang, Y. et. al. (2014). Synthesis of graphene/Ni–Al layered double hydroxide nanowires and their application as an electrode material for supercapacitors. Journal of Materials Chemistry A, 2 (14), 5060. doi: https://doi.org/10.1039/c3ta14613h
  37. Mignani, A., Ballarin, B., Giorgetti, M., Scavetta, E., Tonelli, D., Boanini E. et. al. (2013). Heterostructure of Au Nanoparticles – NiAl Layered Double Hydroxide: Electrosynthesis, Characterization, and Electrocatalytic Properties. The Journal of Physical Chemistry C, 117 (31), 16221–16230. doi: https://doi.org/10.1021/jp4033782
  38. Vlamidis, Y., Scavetta, E., Giorgetti, M., Sangiorgi, N., Tonelli, D. (2017). Electrochemically synthesized cobalt redox active layered double hydroxides for supercapacitors development. Applied Clay Science, 143, 151–158. doi: https://doi.org/10.1016/j.clay.2017.03.031
  39. Wang, T., Xu, W., Wang, H. (2017). Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction. Electrochimica Acta, 257, 118–127. doi: https://doi.org/10.1016/j.electacta.2017.10.074
  40. Martins, P. R., Ferreira, L. M. C., Araki, K., Angnes, L. (2014). Influence of cobalt content on nanostructured alpha-phase-nickel hydroxide modified electrodes for electrocatalytic oxidation of isoniazid. Sensors and Actuators B: Chemical, 192, 601–606. doi: https://doi.org/10.1016/j.snb.2013.11.029
  41. Lamiel, C., Nguyen, V. H., Hussain, I., Shim, J.-J. (2017). Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte. Energy, 140, 901–911. doi: https://doi.org/10.1016/j.energy.2017.09.035
  42. Moazzen, E., Timofeeva, E. V., Segre, C. U. (2017). Role of crystal lattice templating and galvanic coupling in enhanced reversible capacity of Ni(OH)2/Co(OH)2 core/shell battery cathode. Electrochimica Acta, 258, 684–693. doi: https://doi.org/10.1016/j.electacta.2017.11.114
  43. Delmas, C., Braconnier, J. J., Borthomieu, Y., Hagenmuller, P. (1987). New families of cobalt substituted nickel oxyhydroxides and hydroxides obtained by soft chemistry. Materials Research Bulletin, 22 (6), 741–751. doi: https://doi.org/10.1016/0025-5408(87)90027-4
  44. Martins, P. R., Araújo Parussulo, A. L., Toma, S. H., Rocha, M. A., Toma, H. E., Araki, K. (2012). Highly stabilized alpha-NiCo(OH)2 nanomaterials for high performance device application. Journal of Power Sources, 218, 1–4. doi: https://doi.org/10.1016/j.jpowsour.2012.06.065
  45. Chen, J.-C., Hsu, C.-T., Hu, C.-C. (2014). Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. Journal of Power Sources, 253, 205–213. doi: https://doi.org/10.1016/j.jpowsour.2013.12.073
  46. Schneiderová, B., Demel, J., Zhigunov, A., Bohuslav, J., Tarábková, H., Janda, P., Lang, K. (2017). Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties. Journal of Colloid and Interface Science, 499, 138–144. doi: https://doi.org/10.1016/j.jcis.2017.03.096
  47. Nethravathi, C., Ravishankar, N., Shivakumara, C., Rajamathi, M. (2007). Nanocomposites of α-hydroxides of nickel and cobalt by delamination and co-stacking: Enhanced stability of α-motifs in alkaline medium and electrochemical behavior. Journal of Power Sources, 172 (2), 970–974. doi: https://doi.org/10.1016/j.jpowsour.2007.01.098
  48. Lokhande, P. E., Panda, H. S. (2015). Synthesis and Characterization of Ni.Co(OH)2 Material for Supercapacitor Application. IARJSET, 2 (8), 10–19. doi: https://doi.org/10.17148/iarjset.2015.2903
  49. Wang, C. Y., Zhong, S., Bradhurst, D. H., Liu, H. K, Dou, S. X. (2002). Ni/Al/Co-substituted α-Ni(OH)2 as electrode materials in the nickel metal hydride cell. Journal of Alloys and Compounds, 330-332, 802–805. doi: https://doi.org/10.1016/s0925-8388(01)01515-8
  50. Chen, X., Long, C., Lin, C., Wei, T., Yan, J., Jiang, L., Fan, Z. (2014). Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochimica Acta, 137, 352–358. doi: https://doi.org/10.1016/j.electacta.2014.05.151
  51. Hu, M., Ji, X., Lei, L., Lu, X. (2013). The effect of cobalt on the electrochemical performances of Ni–Al layered double hydroxides used in Ni–M(H) battery. Journal of Alloys and Compounds, 578, 17–25. doi: https://doi.org/10.1016/j.jallcom.2013.04.156
  52. Vialat, P., Leroux, F., Mousty, C. (2015). Electrochemical properties of layered double hydroxides containing 3d metal cations. Journal of Solid State Electrochemistry, 19 (7), 1975–1983. doi: https://doi.org/10.1007/s10008-014-2671-0
  53. Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
  54. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  55. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: https://doi.org/10.15587/1729-4061.2016.79559
  56. Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  57. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  58. Kovalenko, V., Kotok, V. (2018). “The popcorn effect”: obtaining of the highly active ultrafine nickel hydroxide by microwave treatment of wet precipitate. Eastern-European Journal of Enterprise Technologies, 5 (6 (95)), 12–20. doi: https://doi.org/10.15587/1729-4061.2018.143126
  59. Kotok, V., Kovalenko, V. (2017). Optimization of nickel hydroxide electrode of the hybrid supercapacitor. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 4–9. doi: https://doi.org/10.15587/1729-4061.2017.90810
  60. Kovalenko, V., Kotok, V., Kovalenko, I. (2018). Activation of the nickel foam as a current collector for application in supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 56–62. doi: https://doi.org/10.15587/1729-4061.2018.133472

##submission.downloads##

Опубліковано

2019-04-24

Як цитувати

Kovalenko, V., & Kotok, V. (2019). Вивчення характеристик подвійного Ni–Co І потрійного Ni–Co–Al шарових гідроксидів для використання в суперконденсаторах. Eastern-European Journal of Enterprise Technologies, 2(6 (98), 58–66. https://doi.org/10.15587/1729-4061.2019.164792

Номер

Розділ

Технології органічних та неорганічних речовин