DOI: https://doi.org/10.15587/1729-4061.2019.171445

Studying additional measurement errors from control tools using an integral functional method

Yosyf Stentsel, Olga Porkuian, Konstiantyn Litvinov, Tetiana Sotnikova

Abstract


Our research has established that under industrial conditions the correction to the result of current measurements when an influencing parameter deviates from the rated value is rarely introduced. In a general case, the procedure for determining an additional measurement error implies that the measured values for an influencing parameter are applied to determine the degree of its deviation while a correction to the current measurement result is calculated as the product of this degree by its rated value.

In a general case, a procedure for determining an additional measurement error includes two stages. At the first stage, the measured values for an influencing parameter are used to determine the degree of its deviation from the rated value. At the second stage, correction is calculated as the product of this degree by the rated value for an additional error.

Such a technique to calculate a correction is time consuming and insufficiently precise, as it does not take into consideration the non-linear dependence of the additional error on a change in the influencing parameter, as well as the current value for the output signal of control tool. To determine the actual value for an influencing parameter and the additional measurement error under industrial operation of control tools, an integral functional method has been proposed. The method implies determining the difference of areas under the nominal and actual acreage static characteristics, limited to a range of measurement. The difference of areas is a function of the output signal of a control tool, a measured parameter and a change in the influencing parameter. It has been shown that the proposed method makes it possible to calculate the actual values for a technological parameter based on its measured and influencing parameters only. We have established regularities between the actual value for a measured parameter, the current value for the output signal from a control tool, and the measured value for an influencing parameter. The proposed method is important and valuable in the operation of computer-integrated control systems of technological parameters, as it makes it possible to determine the actual values for a measured parameter based on relevant algorithms without calculating corrections.


Keywords


control tool; additional error; influencing parameter; integral functional; measurement; static characteristics.

References


DSTU 2681-94. Metrolohiya. Terminy ta vyznachennia (1995). Kyiv: Derzhstandart Ukrainy, 66.

Petrychenko, H., Nazarenko, L., Hots, N. (2014). Metodyka vyznachennia temperaturnoi zalezhnosti popravok dlia zmenshennia diyi vplyvnykh faktoriv na rezultaty vymirennia temperatury za infrachervonym vyprominenniam v umovakh vyrobnytstva. Metrolohiya ta prylady, 4 (48), 8–12.

Calibration of Low-Temperature Infrared Thermometers (2009). MSL Technical Guide 22. Available at: https://pdfs.semanticscholar.org/408a/354c752a4124f68369fa671d93f5acfba7fc.pdf

Pistun, Ye., Matiko, F., Roman, V., Stetsenko, A. (2014). Doslidzhennia pokhybky ultrazvukovykh vytratomiriv za umov spotvorenoi struktury potoku na osnovi CFD-modeliuvannia. Metrolohiya ta prylady, 4 (48), 13–23.

Turkowski, M., Szufleński, P. (2013). New criteria for the experimental validation of CFD simulations. Flow Measurement and Instrumentation, 34, 1–10. doi: https://doi.org/10.1016/j.flowmeasinst.2013.07.003

Random Number Generation and Testing. Available at: http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

Kondrashov, S., Opryshkina, M., Matsak, O. (2015). Kontrol metrolohichnoho stanu system z neliniynymy pervynnymy peretvoriuvachamy za dopomohoiu testovykh vplyviv. Metrolohiya ta prylady, 2, 33–41.

Volodarskiy, E., Koshevaya, L., Dobrolyubova, M. (2017). Otsenivanie kachestva mnogoparametricheskogo tekhnologicheskogo protsessa pri korrelyatsii ego pokazateley. Metrolohiya ta prylady, 5, 20–24.

ISOIEC 17025-2005. General requirements for the competence of testing and calibration laboratories (2005). International Organization for Standardization.

Montgomery, D. C. (2009). Introduction to Statistical Quality Control. John Wiley & Sons, 754.


GOST Style Citations


DSTU 2681-94. Metrolohiya. Terminy ta vyznachennia. Kyiv: Derzhstandart Ukrainy, 1995. 66 p.

Petrychenko H., Nazarenko L., Hots N. Metodyka vyznachennia temperaturnoi zalezhnosti popravok dlia zmenshennia diyi vplyvnykh faktoriv na rezultaty vymirennia temperatury za infrachervonym vyprominenniam v umovakh vyrobnytstva // Metrolohiya ta prylady. 2014. Issue 4 (48). P. 8–12.

Calibration of Low-Temperature Infrared Thermometers // MSL Technical Guide 22. 2009. URL: https://pdfs.semanticscholar.org/408a/354c752a4124f68369fa671d93f5acfba7fc.pdf

Doslidzhennia pokhybky ultrazvukovykh vytratomiriv za umov spotvorenoi struktury potoku na osnovi CFD-modeliuvannia / Pistun Ye., Matiko F., Roman V., Stetsenko A. // Metrolohiya ta prylady. 2014. Issue 4 (48). P. 13–23.

Turkowski M., Szufleński P. New criteria for the experimental validation of CFD simulations // Flow Measurement and Instrumentation. 2013. Vol. 34. P. 1–10. doi: https://doi.org/10.1016/j.flowmeasinst.2013.07.003 

Random Number Generation and Testing. URL: http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

Kondrashov S., Opryshkina M., Matsak O. Kontrol metrolohichnoho stanu system z neliniynymy pervynnymy peretvoriuvachamy za dopomohoiu testovykh vplyviv // Metrolohiya ta prylady. 2015. Issue 2. P. 33–41.

Volodarskiy E., Koshevaya L., Dobrolyubova M. Otsenivanie kachestva mnogoparametricheskogo tekhnologicheskogo protsessa pri korrelyatsii ego pokazateley // Metrolohiya ta prylady. 2017. Issue 5. P. 20–24.

ISO\IEC 17025-2005. General requirements for the competence of testing and calibration laboratories. International Organization for Standardization, 2005.

Montgomery D. C. Introduction to Statistical Quality Control. 6th Ed. John Wiley & Sons, 2009. 754 p.







Copyright (c) 2019 Yosyf Stentsel, Olga Porkuian, Konstiantyn Litvinov, Tetiana Sotnikova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061