A study of approximation of functions of bounded variation by Faber-Schauder partial sums

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.176595

Keywords:

functions of bounded variation, integral metric, modulus of continuity, Faber-Schauder system

Abstract

The Faber-Schauder system of functions was introduced in 1910 and became the first example of a basis in the space of continuous on [0, 1] functions. A number of results are known about the properties of the Faber-Schauder system, including estimations of errors of approximation of functions by polynomials and partial sums of series in the Faber-Schauder system.

It is known that obtaining new estimates of errors of approximation of an arbitrary function by some given class of functions is one of the important tasks in the theory of approximation. Therefore, investigation of the approximation properties of polynomials and partial sums in the Faber-Schauder system is of considerable interest for the modern approximation theory.

The problems of approximation of functions of bounded variation by partial sums of series in the Faber-Schauder system of functions are studied. The estimate of the error of approximation of functions from classes of functions of bounded variation Cp (1≤p<∞) in the space metric Lp using the values of the modulus of continuity of fractional order ϖ2-1/p(f, t) is obtained. From the obtained inequality, the estimate of the error of approximation of continuous functions in terms of the second-order modulus of continuity follows.

Also, in the class of functions Cp (1<p<∞), the estimate of the error of approximation of functions in the space metric Lp using the modulus of continuity of fractional order ϖ1-1/p(f, t) is obtained.

For classes of functions of bounded variation KCV(2,p) (1≤p<∞), the estimate of the error of approximation of functions in the space metric Lp by Faber-Schauder partial sums is obtained.

Thus, several estimates of the errors of approximation of functions of bounded variation by their partial sums of series in the Faber-Schauder system are obtained. The obtained results are new in the theory of approximation. They generalize in a certain way the previously known results and can be used for further practical applications.

Author Biographies

Nikolaj Mormul`, University of Customs and Finance Vladimir Vernadsky str., 2/4, Dnipro, Ukraine, 49000

PhD, Associate Professor

Department of Mathematics and Information

Alexander Shchitov

PhD, Associate Professor

Independent Researcher

References

  1. Faber, G. (1910). Uber die Orthogonalfunktionen des Herrn Haar. Jahresber. Deutsch. Math. Verein, 19, 104–112.
  2. Ciesielski, Z. (1959). On Haar functions and on the Schauder Basis of the Space C(0,1). Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom, 7 (4), 227–232.
  3. Ciesielski, Z. (1963). Properties of the orthonormal Franklin system. Studia Mathematica, 23 (2), 141–157. doi: https://doi.org/10.4064/sm-23-2-141-157
  4. Matveev, V. A. (1967). On Schauder system series. Mathematical Notes of the Academy of Sciences of the USSR, 2 (3), 646–652. doi: https://doi.org/10.1007/bf01094054
  5. Loginov, A. S. (1969). Approximation of continuous functions by broken lines. Mathematical Notes of the Academy of Sciences of the USSR, 6 (2), 549–555. doi: https://doi.org/10.1007/bf01093696
  6. Vakarchuk, S. B., Shchitov, A. N. (2006). Estimates for the error of approximation of classes of differentiable functions by Faber-Schauder partial sums. Sbornik: Mathematics, 197 (3), 303–314. doi: https://doi.org/10.1070/sm2006v197n03abeh003759
  7. Vakarchuk, S. B., Shchitov, A. N. (2014). Otsenka pogreshnosti priblizheniya funktsiy iz klassa L2∞. Materialy mezhdunarodnoy nauchnoy konferentsii «Sovremennye problemy matematiki i ee prepodavaniya». Hudzhand, 2 (1), 38–42.
  8. Vakarchuk, S. B., Shchitov, A. N. (2015). Estimates for the error of approximation of functions in L1p by polynomials and partial sums of series in the Haar and Faber–Schauder systems. Izvestiya: Mathematics, 79 (2), 257–287. doi: https://doi.org/10.4213/im8094
  9. Volosivets, S. S. (1997). Approximation of functions of boundedp-variation by polynomials in terms of the faber-schauder system. Mathematical Notes, 62 (3), 306–313. doi: https://doi.org/10.1007/bf02360871
  10. Sargsyan, A. (2010). Nonlinear approximation with respect to the Faber-Shauder system and greedy algorithm. Armenian Journal of Mathematics, 3 (1).
  11. Grigoryan, M. G., Sargsyan, A. A. (2011). On the coefficients of the expansion of elements fromC[0, 1] space by the Faber-Schauder system. Journal of Function Spaces and Applications, 9 (2), 191–203. doi: https://doi.org/10.1155/2011/403174
  12. Grigoryan, M. G., Krotov, V. G. (2013). Luzin’s correction theorem and the coefficients of Fourier expansions in the Faber-Schauder system. Mathematical Notes, 93 (1-2), 217–223. doi: https://doi.org/10.1134/s0001434613010239
  13. Grigorian, T. M. (2013). On the unconditional convergence of series with respect to the Faber-Schauder system. Analysis Mathematica, 39 (3), 179–188. doi: https://doi.org/10.1007/s10476-013-0302-0
  14. Grigoryan, T., Grigoryan, M. (2017). On the representation of signals series by Faber-Schauder system. MATEC Web of Conferences, 125, 05005. doi: https://doi.org/10.1051/matecconf/201712505005
  15. Grigoryan, M. G., Sargsyan, A. A. (2018). The Fourier–Faber–Schauder Series Unconditionally Divergent in Measure. Siberian Mathematical Journal, 59 (5), 835–842. doi: https://doi.org/10.1134/s0037446618050087
  16. Grigoryan, M. G., Krotov, V. G. (2019). Quasiunconditional basis property of the Faber–Schauder system. Ukrainian Mathematical Journal, 71 (02), 210–219.
  17. Timofeev, E. A. (2017). The Expansion of Self-similar Functions in the Faber–Schauder System. Modeling and Analysis of Information Systems, 24 (4), 508–515. doi: https://doi.org/10.18255/1818-1015-2017-4-508-515
  18. Timofeev, E. A. (2017). Expansion of Self-Similar Functions in the Faber–Schauder System. Automatic Control and Computer Sciences, 51 (7), 586–591. doi: https://doi.org/10.3103/s014641161707032x
  19. Terehin, A. P. (1965). Priblizhenie funktsiy ogranichennoy p-variatsii. Izvestiya vysshih uchebnyh zavedeniy. Matematika, 2, 171–187.
  20. Volosivets, S. S. (1993). Approximation of functions of bounded p-variation by means of polynomials of the Haar and Walsh systems. Mathematical Notes, 53 (6), 569–575. doi: https://doi.org/10.1007/bf01212591
  21. Tyuleneva, A. A. (2015). Approximation of Functions of Bounded p-variation by Euler Means. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 15 (3), 300–309. doi: https://doi.org/10.18500/1816-9791-2015-15-3-300-309
  22. Vakarchuk, S. B., Shchitov, A. (2004). On the best approximation of functions of bounded p-variation by Haar polynomials. Vestnik Dnepropetrovskogo universiteta. Matematika, 11, 28–34.
  23. Wiener, N. (1924). The Quadratic Variation of a Function and its Fourier Coefficients. Journal of Mathematics and Physics, 3 (2), 72–94. doi: https://doi.org/10.1002/sapm19243272
  24. Golubov, B. I. (1967). Continuous functions of bounded p-variation. Mathematical Notes of the Academy of Sciences of the USSR, 1 (3), 203–207. doi: https://doi.org/10.1007/bf01098884
  25. Love, E. R. (1951). A Generalization of Absolute Continuity. Journal of the London Mathematical Society, s1-26 (1), 1–13. doi: https://doi.org/10.1112/jlms/s1-26.1.1
  26. Golubov, B. I. (1968). On functions of bounded p-variation. Mathematics of the USSR-Izvestiya, 2 (4), 799–819. doi: https://doi.org/10.1070/IM1968v002n04ABEH000669
  27. Terekhin, A. P. (1972). Functions of bounded p-variation with given order of modulus of p-continuity. Mathematical Notes of the Academy of Sciences of the USSR, 12 (5), 751–755. doi: https://doi.org/10.1007/bf01099058
  28. Brudniy, Yu. A. (1974). Splayn-approksimatsiya i funktsii ogranichennoy variatsii. Doklady Akademii nauk, 215 (3), 511–513.
  29. Kel'zon, A. A. (1975). O funktsiyah ogranichennoy (m, p)-variatsii. Soobshcheniya AN GSSR, 78 (3), 533–536.
  30. Havpachev, S. K. (1962). O funktsiyah s ogranichennoy m-variatsiey. Uchenye zapiski Kabardino-Balkarskogo universiteta, 16, 65–69.
  31. Harshiladze, F. I. (1951). O funktsiyah s ogranichennym vtorym izmeneniem. Trudy Akademii nauk SSSR, 79 (2), 201–204.
  32. Haar, A. (1909). Zur Theorie der orthogonalen Funktionensysteme. Gottingen.
  33. Golubov, B. I. (1964). On Fourier series of continuous functions with respect to a Haar system. Izv. Akad. Nauk SSSR Ser. Mat., 28 (6), 1271–1296.
  34. Schauder, J. (1927). Zur Theorie Stetiger Abbildungen in Funktionalräumen. Mathematische Zeitschrift, 26 (1), 47–65. doi: https://doi.org/10.1007/bf01475440

Downloads

Published

2019-08-21

How to Cite

Mormul`, N., & Shchitov, A. (2019). A study of approximation of functions of bounded variation by Faber-Schauder partial sums. Eastern-European Journal of Enterprise Technologies, 4(4 (100), 14–20. https://doi.org/10.15587/1729-4061.2019.176595

Issue

Section

Mathematics and Cybernetics - applied aspects