Calculation of the green’s function of boundary value problems for linear ordinary differential equations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.193470

Keywords:

Green's function, ordinary differential equations, power series, generalized power series, boundary value problems

Abstract

The Green’s function is widely used in solving boundary value problems for differential equations, to which many mathematical and physical problems are reduced. In particular, solutions of partial differential equations by the Fourier method are reduced to boundary value problems for ordinary differential equations. Using the Green's function for a homogeneous problem, one can calculate the solution of an inhomogeneous differential equation. Knowing the Green's function makes it possible to solve a whole class of problems of finding eigenvalues in quantum field theory.

The developed method for constructing the Green’s function of boundary value problems for ordinary linear differential equations is described. An algorithm and program for calculating the Green's function of boundary value problems for differential equations of the second and third orders in an explicit analytical form are presented. Examples of computing the Green's function for specific boundary value problems are given. The fundamental system of solutions of ordinary differential equations with singular points needed to construct the Green's function is calculated in the form of generalized power series with the help of the developed programs in the Maple environment. An algorithm is developed for constructing the Green's function in the form of power series for second-order and third-order differential equations with given boundary conditions. Compiled work programs in the Maple environment for calculating the Green functions of arbitrary boundary value problems for differential equations of the second and third orders. Calculations of the Green's function for specific third-order boundary value problems using the developed program are presented. The obtained approximate Green’s function is compared with the known expressions of the exact Green’s function and very good agreement is found

Author Biographies

Irina Belyaeva, Belgorod National Research University Pobedy str., 85, Belgorod, Russia, 308015

PhD, Associate Professor

Department of Computer Science, Natural Sciences and Teaching Methods

Nikalay Chekanov, Belgorod National Research University Pobedy str., 85, Belgorod, Russia, 308015

Doctor of Physical and Mathematical Sciences, Professor

Department of Applied Mathematics and Computer Modeling

Natalia Chekanova, Kharkiv Educational and Scientific Institute of SHEI “Banking University” Peremohy ave., 55, Kharkiv, Ukraine, 61174

PhD, Associate Professor

Department of Information Technology

Igor Kirichenko, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Physical and Mathematical Sciences, Professor

Department of Physical and Mathematical Sciences

Oleg Ptashny, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Higher Mathematics

Tetyana Yarkho, Kharkiv National Automobile and Highway University Yaroslava Mudroho str., 25, Kharkiv, Ukraine, 61002

Doctor of Pedagogical Sciences, Associate Professor, PhD, Head of Department

Department of Higher Mathematics

References

  1. Pinney, E. (1950). The Nonlinear Differential Equation y" + p(x)y + cy-3 = 0. Proceedings of the American Mathematical Society, 1 (5), 681. doi: https://doi.org/10.2307/2032300
  2. Lewis, H. R. (1968). Motion of a Time-Dependent Harmonic Oscillator, and of a Charged Particle in a Class of Time-Dependent, Axially Symmetric Electromagnetic Fields. Physical Review, 172 (5), 1313–1315. doi: https://doi.org/10.1103/physrev.172.1313
  3. Korsch, H. J., Laurent, H. (1981). Milne's differential equation and numerical solutions of the Schrodinger equation. I. Bound-state energies for single- and double-minimum potentials. Journal of Physics B: Atomic and Molecular Physics, 14 (22), 4213–4230. doi: https://doi.org/10.1088/0022-3700/14/22/008
  4. Korsch, H. J., Laurent, H., Mohlenkamp, R. (1982). Milne's differential equation and numerical solutions of the Schrodinger equation. II. Complex energy resonance states. Journal of Physics B: Atomic and Molecular Physics, 15 (1), 1–15. doi: https://doi.org/10.1088/0022-3700/15/1/008
  5. Berkovich, L. M., Rozov, N. Kh. (1972). Some remarks on differential equations of the form y′′+a0(x)y=φ(x)yα. Differentsial'nye uravneniya, 8 (11), 2076–2079.
  6. Ermakov, V. P. (1980). Differentsial'nye uravneniya vtorogo poryadka. Usloviya integriruemosti v konechnom vide. Universitetskie izvestiya, 9, 1–25.
  7. Frasca, M. (2006). Strongly coupled quantum field theory. Physical Review D, 73 (2). doi: https://doi.org/10.1103/physrevd.73.027701
  8. Frasca, M. (2007). Green function method for nonlinear systems. Modern Physics Letters A, 22 (18), 1293–1299. doi: https://doi.org/10.1142/s0217751x08038160
  9. Frasca, M. (2008). Green functions and nonlinear systems: short time expansion. International Journal of Modern Physics A, 23 (02), 299–308. doi: https://doi.org/10.1142/s0217751x08038160
  10. Bulavina, I. A., Kirichenko, I. K., Chekanov, N. A., Chekanova, N. A. (2011). Primenenie matematicheskogo paketa MAPLE dlya rascheta sobstvennyh znacheniy i funktsiy uravneniya Mat'e. Vestnik Hersonskogo natsional'nogo tehnicheskogo universiteta, 3 (42), 115–118.
  11. Bogachev, V. E., Kirichenko, I. K., Chekanova, N. A., Chekanov, N. A. (2015). Issledovanie nelineynoy gamil'tonovoy sistemy metodom normal'noy formy Birkgofa-Gustavsona. Visnyk Kharkivskoho natsionalnoho universytetu imeni V. N. Karazina. Seriya: Matematychne modeliuvannia. Informatsiyni tekhnolohiyi. Avtomatyzovani systemy upravlinnia, 1156, 17–28.
  12. Lewis, H. R. (1968). Class of Exact Invariants for Classical and Quantum Time‐Dependent Harmonic Oscillators. Journal of Mathematical Physics, 9 (11), 1976–1986. doi: https://doi.org/10.1063/1.1664532
  13. Khurshudyan, A. Z. (2018). New Green’s functions for some nonlinear oscillating systems and related PDEs. International Journal of Modern Physics C, 29 (04), 1850032. doi: https://doi.org/10.1142/s0129183118500328
  14. Khurshudyan, As. Zh., Frasca, M. (2018). Green's functions for higher order nonlinear equations. Available at: https://www.researchgate.net/publication/326110263_Green's_functions_for_higher_order_nonlinear_equations
  15. Lutsenko, A. V., Skorik, V. A. (2002). Funktsiya Grina i ee primenenie. Kharkiv: izdatel'stvo KhNU, 26.
  16. Egorov, Y. V. (1990). A contribution to the theory of generalized functions. Russian Mathematical Surveys, 45 (5), 1–49. doi: https://doi.org/10.1070/rm1990v045n05abeh002683
  17. Stakgold, I., Holst, M. (Eds.) (2011). Green’s functions and boundary value problems. John Wiley & Sons. doi: https://doi.org/10.1002/9780470906538
  18. Belyaeva, I. N., Ukolov, Yu. A., Chekanov, N. A. (2005). Postroenie obshchego resheniya differentsial'nyh uravneniy fuksovskogo tipa v vide stepennyh ryadov. Svidetel'stvo ob otraslevoy registratsii razrabotki No. 50200500089.
  19. Belyaeva, I. N., Chekanov, N. A. (2010). Simvol'no-chislennoe integrirovanie lineynogo differentsial'nogo uravneniya tret'ego poryadka v vide obobshchennyh ryadov. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM No. 2010614257. Zayavka No. 2010612592 ot 11 maya 2010 g.
  20. Belyaeva, I. N., Chekanov, N. A. (2011). Programma postroeniya funktsii Grina dlya differentsial'nogo uravneniya vtorogo poryadka. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM No. 2011616934.
  21. Belyaeva, I. N., Bogachev, V. E., Chekanov, N. A. (2012). Programma postroeniya funktsii Grina dlya obyknovennogo differentsial'nogo uravneniya tret'ego poryadka. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM No. 2012661078.
  22. Kamke, E. (1965). Spravochnik po obyknovennym differentsial'nym uravneniyam. Moscow: Nauka, 704.
  23. Mihlin, S. G. (1947). Prilozheniya integral'nyh uravneniy k nekotorym problemam mehaniki, matematicheskoy fiziki i tehniki. Moscow-Leningrad: OGIZ izdatel'stvo tehniko-teoreticheskoy literatury, 304.

Downloads

Published

2020-02-29

How to Cite

Belyaeva, I., Chekanov, N., Chekanova, N., Kirichenko, I., Ptashny, O., & Yarkho, T. (2020). Calculation of the green’s function of boundary value problems for linear ordinary differential equations. Eastern-European Journal of Enterprise Technologies, 1(4 (103), 43–52. https://doi.org/10.15587/1729-4061.2020.193470

Issue

Section

Mathematics and Cybernetics - applied aspects