Improving aircraft fuel efficiency by using the adaptive wing and winglets

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.200664

Keywords:

aerodynamic quality, fuel efficiency, adaptive wing, artificial laminarization, spiroid winglets

Abstract

Improving the aircraft’s fuel efficiency is one of the main requirements for prospective and modernized aircraft. This paper reports the assessment of change in aerodynamic quality resulting in the improved fuel efficiency of a long-range aircraft when using promising means to enhance aerodynamic quality. These means include the abandonment of the mechanization of wing edges and conventional controls through the use of an adaptive wing, the artificial laminarization of the flow around the elements of a glider, the application of winglets. The abandonment of conventional wing controls and wing mechanization is predetermined by the need to ensure a seamless surface of the glider elements to prevent the premature turbulization of the flow that consequently leads to a decrease in the profile drag of an aircraft. The use of winglets is aimed at reducing inductive drag. Determining a change in the aircraft’s fuel efficiency would make it possible to estimate a change in the operating costs during its life cycle.

The study employed the known modular software complex «Integration 2.1». The engineering and navigational calculation was performed for a typical flight profile of a long-range aircraft. The possibility of reducing fuel consumption by up to 20 % has been shown. The largest impact on the decrease in fuel consumption is exerted by the flow laminarization on the surface of the glider elements; the reduction in fuel consumption was 17.1 %. The abandonment of mechanization and ailerons decreases fuel consumption by 3.9 %, while the abandonment of ailerons, slats, and flaps reduces fuel consumption by 0.4, 1.5, and 0.4 %, respectively. The use of spiroid winglets made it possible to reduce fuel consumption by 1.95 %

Author Biographies

Viktor Popov, JSC "FED" Sumska str., 132, Kharkiv, Ukraine, 61023

PhD, Chairman of Board

Vasiliy Loginov, National Aerospace University "Kharkiv Aviation Institute" Chkalova str., 17, Kharkiv, Ukraine, 61070

Doctor of Technical Sciences, Senior Researcher

Department of Aircraft Engine Design

Yevgen Ukrainets, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of the Design and Strength of Aircraft and Engines

Volodymyr Shmyrov, Antonov State Enterprise Tupolieva str, 1, Kyiv, Ukraine, 03062

PhD, Vice President

Petro Steshenko, State Research Institute of Aviation Andryushchenko str., 6V, Kyiv, Ukraine, 01135

PhD

Research Laboratory of Automated Control Systems and Target Equipment for Unmanned Aerial Vehicles

Pavlo Hlushchenko, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Adjunct

Department of Scientific and Organizational

Department of Design and Strength of Aircraft and Engines

References

  1. Arutyunov, A. G., Dydyshko, D. V., Endogur, A. I., Kuznetsov, K. V., Tolmachev, V. I. (2016). Perspektivy razvitiya transportnyh samoletov. Trudy MAI, 90. Available at: https://mai.ru/upload/iblock/d01/arutyunov_dydyshko_endogur_kuznetsov_tolmachev_rus2_1.pdf
  2. Levickiy, S. V., Levickaya, E. V. (2014). The methods of assessment of transportation efficiency of a passenger aircraft. Nauchniy vestnik MGTU GA, 205, 99–106. Available at: https://avia.mstuca.ru/jour/article/view/636/554
  3. Ruban, I., Khudov, H., Makoveichuk, O., Khizhnyak, I., Khudov, V., Podlipaiev, V. et. al. (2019). Segmentation of optical-electronic images from on-board systems of remote sensing of the earth by the artificial bee colony method. Eastern-European Journal of Enterprise Technologies, 2 (9 (98)), 37–45. doi: https://doi.org/10.15587/1729-4061.2019.161860
  4. Tinyakov, D. V. (2013). Vliyanie chastnyh kriteriev effektivnosti nesushchih poverhnostey samoletov transportnoy kategorii na velichinu kreyserskogo aerodinamicheskogo kachestva. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nyh apparatov, 2, 18–24. Available at: http://nbuv.gov.ua/UJRN/Pptvk_2013_2_4
  5. Benzakein, M. J. (2014). What does the future bring? A look at technologies for commercial aircraft in the years 2035–2050. Propulsion and Power Research, 3 (4), 165–174. doi: https://doi.org/10.1016/j.jppr.2014.11.004
  6. Abbas, A., de Vicente, J., Valero, E. (2013). Aerodynamic technologies to improve aircraft performance. Aerospace Science and Technology, 28 (1), 100–132. doi: https://doi.org/10.1016/j.ast.2012.10.008
  7. Jucobs, P. F., Flechner, S. G., Montoya, L. C. (1977). Effect of winglets on a first-generation jet transport wing. I – longitudinal aerodynamic characteristics of a semispan model at subsonic speeds. NASA technical note. Wishington, D-8473, 48. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780012121.pdf
  8. Djojodihardjo, H. (2011). Review on Development and Recent Patents on Trailing Vortices Alleviation. Recent Patents on Mechanical Engineeringe, 4 (2), 83–129. doi: https://doi.org/10.2174/2212797611104020083
  9. Hantrais-Gervois, J.-L., Grenon, R., Mann, A., Büscher, A. (2009). Downward pointing winglet design and assessment within the M-DAW research project. The Aeronautical Journal, 113 (1142), 221–232. doi: https://doi.org/10.1017/s000192400000289x
  10. Whitcomb, R. T. (1976). A design approach and selected wind-tunnel results at high subsonic speeds for wing-tip mounted. NASA technical note, D-8260, 30. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760019075.pdf
  11. Céron-Muñoz, H. D., Cosin, R., Coimbra, R. F. F., Correa, L. G. N., Catalano, F. M. (2013). Experimental Investigation of Wing-Tip Devices on the Reduction of Induced Drag. Journal of Aircraft, 50 (2), 441–449. doi: https://doi.org/10.2514/1.c031862
  12. International Air Transport Association IATA (2013). IATA Technology Roadmap.
  13. Gratzer, L. B. (1991). Pat. No. US5102068A. Spiroid-tipped wing. No. 660,651; declareted: 25.02.91; published: 7.04.92. Available at: https://patentimages.storage.googleapis.com/bb/2c/14/e925d497e132fa/US5102068.pdf
  14. Nazarinia, M., Soltani, M. R., Ghorb, K. (2006). Experimental study of vortex shapes behind a wing equipped with different winglets. JAST, 3 (1), 1–15. Available at: https://www.sid.ir/FileServer/JE/99120060101.pdf
  15. Guerrero, J. E., Maestro, D., Bottaro, A. (2012). Biomimetic spiroid winglets for lift and drag control. Comptes Rendus Mécanique, 340 (1-2), 67–80. doi: https://doi.org/10.1016/j.crme.2011.11.007
  16. Mostafa, S., Bose, S., Nair, A., Raheem, M. A., Majeed, T., Mohammed, A., Kim, Y. (2014). A parametric investigation of non-circular spiroid winglets. EPJ Web of Conferences, 67, 02077. doi: https://doi.org/10.1051/epjconf/20146702077
  17. Catalin, N. (2014). Advanced Aerodynamic Technologies for Future Green Regional Aircraft. INCAS BULLETIN, 6 (Special 1), 99–110. doi: https://doi.org/10.13111/2066-8201.2014.6.s1.11
  18. Bushnell, D. M., Malik, M. R. (1987). Application of Stability Theory to Laminar Flow Control – Progress and Requirements. Stability of Time Dependent and Spatially Varying Flows, 1–17. doi: https://doi.org/10.1007/978-1-4612-4724-1_1
  19. Chernyshev, S. L., Kiselev, A. P., Kuryachii, A. P. (2011). Laminar flow control research at TsAGI: Past and present. Progress in Aerospace Sciences, 47 (3), 169–185. doi: https://doi.org/10.1016/j.paerosci.2010.11.001
  20. Bokser, V. D., Babuev, V., Kiselev, A., Mikeladze, V. G., Shapovalov, G. K. (1997). The Experimental Investigation of HLFC-System Use on the Swept Wing at Subsonic Velocities. SAE Technical Paper Series. doi: https://doi.org/10.4271/975500
  21. Collier, F. S. (1994). Recent progress in the development of laminar flow aircraft. ICAS Proceedings, 3 (19), 2436–2455. Available at: https://www.icas.org/ICAS_ARCHIVE/ICAS1994/ICAS-94-4.7.1.pdf
  22. Horstmann, K., Redeker, G., Quast, A., Dressler, U., Bieler, H. (1990). Flight tests with a natural laminar flow glove on a transport aircraft. Flight Simulation Technologies Conference and Exhibit. doi: https://doi.org/10.2514/6.1990-3044
  23. Bulgubre, C., Arnal, D. (1992). Dassault Falcon 50 laminar flow flight demonstrator. Proceedings First European Forum on Laminar Flow Technology. Hamburg, 11–19.
  24. Barbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., Inman, D. J. (2011). A Review of Morphing Aircraft. Journal of Intelligent Material Systems and Structures, 22 (9), 823–877. doi: https://doi.org/10.1177/1045389x11414084
  25. Li, D., Zhao, S., Da Ronch, A., Xiang, J., Drofelnik, J., Li, Y. et. al. (2018). A review of modelling and analysis of morphing wings. Progress in Aerospace Sciences, 100, 46–62. doi: https://doi.org/10.1016/j.paerosci.2018.06.002
  26. Kiselev, M. A., Ismagilov, F. R., Vavilov, V. E., Sayakhov, I. F. (2017). Problem of adaptive wings applicalion. Vestnik UGATU, 21 (1 (75)), 136–141. Available at: http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/29
  27. Thill, C., Etches, J., Bond, I., Potter, K., Weaver, P. (2008). Morphing skins. The Aeronautical Journal, 112 (1129), 117–139. doi: https://doi.org/10.1017/s0001924000002062
  28. Kota, S., Flick, P., Collier, F. S. (2016). Flight Testing of FlexFloilTM Adaptive Compliant Trailing Edge. 54th AIAA Aerospace Sciences Meeting. doi: https://doi.org/10.2514/6.2016-0036
  29. Sodja, J., Martinez, M. J., Simpson, J. C., De Breuker, R. (2015). Experimental Evaluation of the Morphing Leading Edge Concept. 23rd AIAA/AHS Adaptive Structures Conference. doi: https://doi.org/10.2514/6.2015-0791
  30. Magrini, A., Benini, E. (2018). Aerodynamic Optimization of a Morphing Leading Edge Airfoil with a Constant Arc Length Parameterization. Journal of Aerospace Engineering, 31 (2), 04017093. doi: https://doi.org/10.1061/(asce)as.1943-5525.0000812
  31. Magrini, A., Benini, E., Ponza, R., Wang, C., Khodaparast, H., Friswell, M. et. al. (2019). Comparison of Constrained Parameterisation Strategies for Aerodynamic Optimisation of Morphing Leading Edge Airfoil. Aerospace, 6 (3), 31. doi: https://doi.org/10.3390/aerospace6030031
  32. Lyu, Z., Martins, J. R. R. A. (2015). Aerodynamic Shape Optimization of an Adaptive Morphing Trailing-Edge Wing. Journal of Aircraft, 52 (6), 1951–1970. doi: https://doi.org/10.2514/1.c033116
  33. Ninian, D., Dakka, S. (2017). Design, Development and Testing of Shape Shifting Wing Model. Aerospace, 4 (4), 52. doi: https://doi.org/10.3390/aerospace4040052
  34. Woods, B. K. S., Bilgen, O., Friswell, M. I. (2012). Wind Tunnel Testing of the Fish Bone Active Camber Morphing Concept. ICAST, 54, 1–14. Available at: http://michael.friswell.com/PDF_Files/C332.pdf
  35. Loginov, V. V., Ukrainetc, E. A., Kravchenko, I. F., Yelanskiy, A. V. (2014). Engineering-and-economical performance estimation methodic of a light domestic airliner - turboprop engine system. Systemy ozbroiennia i viyskova tekhnika, 1 (37), 150–160.
  36. Loginov, V. V., Kravchenko, I. F., Elanskiy, A. V., Smyk, S. I. (2012). Uluchshenie letno-tehnicheskih harakteristik uchebno-trenirovochnogo samoleta na osnove vybora i zameny dvigatelya silovoy ustanovki. Systemy ozbroiennia i viyskova tekhnika, 1 (29), 60–67. Available at: http://www.hups.mil.gov.ua/periodic-app/article/1943/soivt_2012_1_16.pdf
  37. Loginov, V., Ukraintes, Y. (2016). Analysis of operational characteristics of aviation dieseland gas turbine engines for light passenger aircraft. Transactions of the Institute of Aviation, 245 (4), 103–115. doi: https://doi.org/10.5604/05096669.1226429
  38. Petrov, A. S. (2009). Podemnaya sila i induktivnoe soprotivlenie kryla konechnogo razmaha v potoke vyazkogo szhimaemogo gaza pri dozvukovyh skorostyah. Uchenye zapiski TSAGI, 5, 16–28. Available at: https://cyberleninka.ru/article/n/podemnaya-sila-i-induktivnoe-soprotivlenie-kryla-konechnogo-razmaha-v-potoke-vyazkogo-szhimaemogo-gaza-pri-dozvukovyh-skorostyah

Downloads

Published

2020-04-30

How to Cite

Popov, V., Loginov, V., Ukrainets, Y., Shmyrov, V., Steshenko, P., & Hlushchenko, P. (2020). Improving aircraft fuel efficiency by using the adaptive wing and winglets. Eastern-European Journal of Enterprise Technologies, 2(1 (104), 51–59. https://doi.org/10.15587/1729-4061.2020.200664

Issue

Section

Engineering technological systems