Improving aircraft fuel efficiency by using the adaptive wing and winglets
DOI:
https://doi.org/10.15587/1729-4061.2020.200664Keywords:
aerodynamic quality, fuel efficiency, adaptive wing, artificial laminarization, spiroid wingletsAbstract
Improving the aircraft’s fuel efficiency is one of the main requirements for prospective and modernized aircraft. This paper reports the assessment of change in aerodynamic quality resulting in the improved fuel efficiency of a long-range aircraft when using promising means to enhance aerodynamic quality. These means include the abandonment of the mechanization of wing edges and conventional controls through the use of an adaptive wing, the artificial laminarization of the flow around the elements of a glider, the application of winglets. The abandonment of conventional wing controls and wing mechanization is predetermined by the need to ensure a seamless surface of the glider elements to prevent the premature turbulization of the flow that consequently leads to a decrease in the profile drag of an aircraft. The use of winglets is aimed at reducing inductive drag. Determining a change in the aircraft’s fuel efficiency would make it possible to estimate a change in the operating costs during its life cycle.
The study employed the known modular software complex «Integration 2.1». The engineering and navigational calculation was performed for a typical flight profile of a long-range aircraft. The possibility of reducing fuel consumption by up to 20 % has been shown. The largest impact on the decrease in fuel consumption is exerted by the flow laminarization on the surface of the glider elements; the reduction in fuel consumption was 17.1 %. The abandonment of mechanization and ailerons decreases fuel consumption by 3.9 %, while the abandonment of ailerons, slats, and flaps reduces fuel consumption by 0.4, 1.5, and 0.4 %, respectively. The use of spiroid winglets made it possible to reduce fuel consumption by 1.95 %
References
- Arutyunov, A. G., Dydyshko, D. V., Endogur, A. I., Kuznetsov, K. V., Tolmachev, V. I. (2016). Perspektivy razvitiya transportnyh samoletov. Trudy MAI, 90. Available at: https://mai.ru/upload/iblock/d01/arutyunov_dydyshko_endogur_kuznetsov_tolmachev_rus2_1.pdf
- Levickiy, S. V., Levickaya, E. V. (2014). The methods of assessment of transportation efficiency of a passenger aircraft. Nauchniy vestnik MGTU GA, 205, 99–106. Available at: https://avia.mstuca.ru/jour/article/view/636/554
- Ruban, I., Khudov, H., Makoveichuk, O., Khizhnyak, I., Khudov, V., Podlipaiev, V. et. al. (2019). Segmentation of optical-electronic images from on-board systems of remote sensing of the earth by the artificial bee colony method. Eastern-European Journal of Enterprise Technologies, 2 (9 (98)), 37–45. doi: https://doi.org/10.15587/1729-4061.2019.161860
- Tinyakov, D. V. (2013). Vliyanie chastnyh kriteriev effektivnosti nesushchih poverhnostey samoletov transportnoy kategorii na velichinu kreyserskogo aerodinamicheskogo kachestva. Voprosy proektirovaniya i proizvodstva konstruktsiy letatel'nyh apparatov, 2, 18–24. Available at: http://nbuv.gov.ua/UJRN/Pptvk_2013_2_4
- Benzakein, M. J. (2014). What does the future bring? A look at technologies for commercial aircraft in the years 2035–2050. Propulsion and Power Research, 3 (4), 165–174. doi: https://doi.org/10.1016/j.jppr.2014.11.004
- Abbas, A., de Vicente, J., Valero, E. (2013). Aerodynamic technologies to improve aircraft performance. Aerospace Science and Technology, 28 (1), 100–132. doi: https://doi.org/10.1016/j.ast.2012.10.008
- Jucobs, P. F., Flechner, S. G., Montoya, L. C. (1977). Effect of winglets on a first-generation jet transport wing. I – longitudinal aerodynamic characteristics of a semispan model at subsonic speeds. NASA technical note. Wishington, D-8473, 48. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780012121.pdf
- Djojodihardjo, H. (2011). Review on Development and Recent Patents on Trailing Vortices Alleviation. Recent Patents on Mechanical Engineeringe, 4 (2), 83–129. doi: https://doi.org/10.2174/2212797611104020083
- Hantrais-Gervois, J.-L., Grenon, R., Mann, A., Büscher, A. (2009). Downward pointing winglet design and assessment within the M-DAW research project. The Aeronautical Journal, 113 (1142), 221–232. doi: https://doi.org/10.1017/s000192400000289x
- Whitcomb, R. T. (1976). A design approach and selected wind-tunnel results at high subsonic speeds for wing-tip mounted. NASA technical note, D-8260, 30. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760019075.pdf
- Céron-Muñoz, H. D., Cosin, R., Coimbra, R. F. F., Correa, L. G. N., Catalano, F. M. (2013). Experimental Investigation of Wing-Tip Devices on the Reduction of Induced Drag. Journal of Aircraft, 50 (2), 441–449. doi: https://doi.org/10.2514/1.c031862
- International Air Transport Association IATA (2013). IATA Technology Roadmap.
- Gratzer, L. B. (1991). Pat. No. US5102068A. Spiroid-tipped wing. No. 660,651; declareted: 25.02.91; published: 7.04.92. Available at: https://patentimages.storage.googleapis.com/bb/2c/14/e925d497e132fa/US5102068.pdf
- Nazarinia, M., Soltani, M. R., Ghorb, K. (2006). Experimental study of vortex shapes behind a wing equipped with different winglets. JAST, 3 (1), 1–15. Available at: https://www.sid.ir/FileServer/JE/99120060101.pdf
- Guerrero, J. E., Maestro, D., Bottaro, A. (2012). Biomimetic spiroid winglets for lift and drag control. Comptes Rendus Mécanique, 340 (1-2), 67–80. doi: https://doi.org/10.1016/j.crme.2011.11.007
- Mostafa, S., Bose, S., Nair, A., Raheem, M. A., Majeed, T., Mohammed, A., Kim, Y. (2014). A parametric investigation of non-circular spiroid winglets. EPJ Web of Conferences, 67, 02077. doi: https://doi.org/10.1051/epjconf/20146702077
- Catalin, N. (2014). Advanced Aerodynamic Technologies for Future Green Regional Aircraft. INCAS BULLETIN, 6 (Special 1), 99–110. doi: https://doi.org/10.13111/2066-8201.2014.6.s1.11
- Bushnell, D. M., Malik, M. R. (1987). Application of Stability Theory to Laminar Flow Control – Progress and Requirements. Stability of Time Dependent and Spatially Varying Flows, 1–17. doi: https://doi.org/10.1007/978-1-4612-4724-1_1
- Chernyshev, S. L., Kiselev, A. P., Kuryachii, A. P. (2011). Laminar flow control research at TsAGI: Past and present. Progress in Aerospace Sciences, 47 (3), 169–185. doi: https://doi.org/10.1016/j.paerosci.2010.11.001
- Bokser, V. D., Babuev, V., Kiselev, A., Mikeladze, V. G., Shapovalov, G. K. (1997). The Experimental Investigation of HLFC-System Use on the Swept Wing at Subsonic Velocities. SAE Technical Paper Series. doi: https://doi.org/10.4271/975500
- Collier, F. S. (1994). Recent progress in the development of laminar flow aircraft. ICAS Proceedings, 3 (19), 2436–2455. Available at: https://www.icas.org/ICAS_ARCHIVE/ICAS1994/ICAS-94-4.7.1.pdf
- Horstmann, K., Redeker, G., Quast, A., Dressler, U., Bieler, H. (1990). Flight tests with a natural laminar flow glove on a transport aircraft. Flight Simulation Technologies Conference and Exhibit. doi: https://doi.org/10.2514/6.1990-3044
- Bulgubre, C., Arnal, D. (1992). Dassault Falcon 50 laminar flow flight demonstrator. Proceedings First European Forum on Laminar Flow Technology. Hamburg, 11–19.
- Barbarino, S., Bilgen, O., Ajaj, R. M., Friswell, M. I., Inman, D. J. (2011). A Review of Morphing Aircraft. Journal of Intelligent Material Systems and Structures, 22 (9), 823–877. doi: https://doi.org/10.1177/1045389x11414084
- Li, D., Zhao, S., Da Ronch, A., Xiang, J., Drofelnik, J., Li, Y. et. al. (2018). A review of modelling and analysis of morphing wings. Progress in Aerospace Sciences, 100, 46–62. doi: https://doi.org/10.1016/j.paerosci.2018.06.002
- Kiselev, M. A., Ismagilov, F. R., Vavilov, V. E., Sayakhov, I. F. (2017). Problem of adaptive wings applicalion. Vestnik UGATU, 21 (1 (75)), 136–141. Available at: http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/29
- Thill, C., Etches, J., Bond, I., Potter, K., Weaver, P. (2008). Morphing skins. The Aeronautical Journal, 112 (1129), 117–139. doi: https://doi.org/10.1017/s0001924000002062
- Kota, S., Flick, P., Collier, F. S. (2016). Flight Testing of FlexFloilTM Adaptive Compliant Trailing Edge. 54th AIAA Aerospace Sciences Meeting. doi: https://doi.org/10.2514/6.2016-0036
- Sodja, J., Martinez, M. J., Simpson, J. C., De Breuker, R. (2015). Experimental Evaluation of the Morphing Leading Edge Concept. 23rd AIAA/AHS Adaptive Structures Conference. doi: https://doi.org/10.2514/6.2015-0791
- Magrini, A., Benini, E. (2018). Aerodynamic Optimization of a Morphing Leading Edge Airfoil with a Constant Arc Length Parameterization. Journal of Aerospace Engineering, 31 (2), 04017093. doi: https://doi.org/10.1061/(asce)as.1943-5525.0000812
- Magrini, A., Benini, E., Ponza, R., Wang, C., Khodaparast, H., Friswell, M. et. al. (2019). Comparison of Constrained Parameterisation Strategies for Aerodynamic Optimisation of Morphing Leading Edge Airfoil. Aerospace, 6 (3), 31. doi: https://doi.org/10.3390/aerospace6030031
- Lyu, Z., Martins, J. R. R. A. (2015). Aerodynamic Shape Optimization of an Adaptive Morphing Trailing-Edge Wing. Journal of Aircraft, 52 (6), 1951–1970. doi: https://doi.org/10.2514/1.c033116
- Ninian, D., Dakka, S. (2017). Design, Development and Testing of Shape Shifting Wing Model. Aerospace, 4 (4), 52. doi: https://doi.org/10.3390/aerospace4040052
- Woods, B. K. S., Bilgen, O., Friswell, M. I. (2012). Wind Tunnel Testing of the Fish Bone Active Camber Morphing Concept. ICAST, 54, 1–14. Available at: http://michael.friswell.com/PDF_Files/C332.pdf
- Loginov, V. V., Ukrainetc, E. A., Kravchenko, I. F., Yelanskiy, A. V. (2014). Engineering-and-economical performance estimation methodic of a light domestic airliner - turboprop engine system. Systemy ozbroiennia i viyskova tekhnika, 1 (37), 150–160.
- Loginov, V. V., Kravchenko, I. F., Elanskiy, A. V., Smyk, S. I. (2012). Uluchshenie letno-tehnicheskih harakteristik uchebno-trenirovochnogo samoleta na osnove vybora i zameny dvigatelya silovoy ustanovki. Systemy ozbroiennia i viyskova tekhnika, 1 (29), 60–67. Available at: http://www.hups.mil.gov.ua/periodic-app/article/1943/soivt_2012_1_16.pdf
- Loginov, V., Ukraintes, Y. (2016). Analysis of operational characteristics of aviation dieseland gas turbine engines for light passenger aircraft. Transactions of the Institute of Aviation, 245 (4), 103–115. doi: https://doi.org/10.5604/05096669.1226429
- Petrov, A. S. (2009). Podemnaya sila i induktivnoe soprotivlenie kryla konechnogo razmaha v potoke vyazkogo szhimaemogo gaza pri dozvukovyh skorostyah. Uchenye zapiski TSAGI, 5, 16–28. Available at: https://cyberleninka.ru/article/n/podemnaya-sila-i-induktivnoe-soprotivlenie-kryla-konechnogo-razmaha-v-potoke-vyazkogo-szhimaemogo-gaza-pri-dozvukovyh-skorostyah
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Viktor Popov, Vasiliy Loginov, Yevgen Ukrainets, Petro Steshenko, Pavlo Hlushchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.