A study of the increased temperature influence on the electrochromic and electrochemical characteristics of Ni(OH)2-PVA composite films
DOI:
https://doi.org/10.15587/1729-4061.2020.205352Keywords:
electrochromic device, electrochemical deposition, nickel hydroxide, template, polyvinyl alcohol, degradation, re-crystallization, basic solution, coloration, bleachingAbstract
Electrochromic devices, as an element of “smart” windows, can be exposed to extreme temperatures due to their purpose and location. Exposure to high temperatures can change the characteristics of electrochromic devices and lead to malfunction. The present study is intended to fill in the gaps related to the stability of electrochemical and electrochromic parameters of one of the known materials – nickel hydroxide (II).
The present study highlights changes in some physico-chemical characteristics that occur during prolonged exposure to high temperature in different media. Ni(OH)2-polyvinyl alcohol, prepared using the cathodic template method, was aged at 80 °С under the air atmosphere and in the working electrolyte solution – 0.1 М KOH for 8 hours. The temperature was chosen based on the maximum registered temperature on Earth, possible film heat up and possible rapid degradation of electrochromic films.
As a result, it was found that degradation does occur in a basic solution, while on air some improvement was observed instead. The authors propose the mechanism that explains experimental results, which lies in “ageing” of active material Ni(OH)2. The latter occurs in the active mass of alkaline batteries. Possible methods for preventing degradation are also proposed, which can be realized with the use of thickened electrolytes or special films that are deposited onto the electrochromeReferences
- Hayashi, A., Akimoto, K., Sano, F., Mori, S., Tomoda, T. (2009). Evaluation of global warming impacts for different levels of stabilization as a step toward determination of the long-term stabilization target. Climatic Change, 98 (1-2), 87–112. doi: https://doi.org/10.1007/s10584-009-9663-6
- Cortés-Borda, D., Ruiz-Hernández, A., Guillén-Gosálbez, G., Llop, M., Guimerà, R., Sales-Pardo, M. (2015). Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach. Energy Policy, 77, 21–30. doi: https://doi.org/10.1016/j.enpol.2014.11.020
- Dincer, I., Hepbasli, A., Midilli, A., Karakoc, T. H. (Eds.) (2010). Global warming: Engineering solutions. Green Energy and Technology. Springer. doi: https://doi.org/10.1007/978-1-4419-1017-2
- Panja, P. (2019). Deforestation, Carbon dioxide increase in the atmosphere and global warming: A modelling study. International Journal of Modelling and Simulation, 1–11. doi: https://doi.org/10.1080/02286203.2019.1707501
- Smart Windows: Energy Efficiency with a View. Available at: https://www.nrel.gov/news/features/2010/1555.html
- Wang, S.-M., Liu, L., Chen, W.-L., Wang, E.-B. (2013). High performance visible and near-infrared region electrochromic smart windows based on the different structures of polyoxometalates. Electrochimica Acta, 113, 240–247. doi: https://doi.org/10.1016/j.electacta.2013.09.048
- Lee, S. J., Choi, D. S., Kang, S. H., Yang, W. S., Nahm, S., Han, S. H., Kim, T. (2019). VO2/WO3-Based Hybrid Smart Windows with Thermochromic and Electrochromic Properties. ACS Sustainable Chemistry & Engineering, 7 (7), 7111–7117. doi: https://doi.org/10.1021/acssuschemeng.9b00052
- Tang, Q., He, L., Yang, Y., Long, J., Fu, X.-K., Gong, C. (2016). Effects of substitution position on electrochemical, electrochromic, optical, and photoresponsive properties of azobenzenecarboxylic acid alkyl ester derivatives. Organic Electronics, 30, 200–206. doi: https://doi.org/10.1016/j.orgel.2015.11.010
- NuLi, Y. (2003). Electrochemical and electrochromic characteristics of Ta2O5–ZnO composite films. Solid State Ionics, 160 (1-2), 197–207. doi: https://doi.org/10.1016/s0167-2738(03)00162-0
- Cupelli, D., De Filpo, G., Chidichimo, G., Nicoletta, F. P. (2006). The electro-optical and electrochromic properties of electrolyte-liquid crystal dispersions. Journal of Applied Physics, 100 (2), 024515. doi: https://doi.org/10.1063/1.2219696
- Nicoletta, F. P., Chidichimo, G., Cupelli, D., De Filpo, G., De Benedittis, M., Gabriele, B. et. al. (2005). Electrochromic Polymer-Dispersed Liquid-Crystal Film: A New Bifunctional Device. Advanced Functional Materials, 15 (6), 995–999. doi: https://doi.org/10.1002/adfm.200400403
- Ghosh, A., Norton, B., Duffy, A. (2016). Daylighting performance and glare calculation of a suspended particle device switchable glazing. Solar Energy, 132, 114–128. doi: https://doi.org/10.1016/j.solener.2016.02.051
- Ghosh, A., Norton, B., Duffy, A. (2016). First outdoor characterisation of a PV powered suspended particle device switchable glazing. Solar Energy Materials and Solar Cells, 157, 1–9. doi: https://doi.org/10.1016/j.solmat.2016.05.013
- Su, C., Qiu, M., An, Y., Sun, S., Zhao, C., Mai, W. (2020). Controllable fabrication of α-Ni(OH)2 thin films with preheating treatment for long-term stable electrochromic and energy storage applications. Journal of Materials Chemistry C, 8 (9), 3010–3016. doi: https://doi.org/10.1039/c9tc06354d
- Kotok, V. A., Kovalenko, V. L., Zima, A. S., Kirillova, E. A., Burkov, A. A., Kobylinska, N. G. et. al. (2019). Optimization of electrolyte composition for the cathodic template deposition of Ni(OH)2 -based electrochromic films on FTO glass. ARPN Journal of Engineering and Applied Sciences, 14 (2), 344–353. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2019/jeas_0119_7562.pdf
- Kotok, V., Kovalenko, V. (2019). A study of an electrochromic device based on Ni(OH)2/PVA film with the mesh-like silver counter electrode. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 49–55. doi: https://doi.org/10.15587/1729-4061.2019.181396
- Kotok, V., Kovalenko, V. (2020). Selection of the formation mode of a zinc mesh electrode for an electrochromic device with the possibility of energy recovery. Eastern-European Journal of Enterprise Technologies, 2 (6 (104)), 13–20. doi: https://doi.org/10.15587/1729-4061.2020.200559
- Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2017/jeas_0717_6156.pdf
- Goel, R., Jha, R., Ravikant, C. (2020). Investigating the structural, electrochemical, and optical properties of p-type spherical nickel oxide (NiO) nanoparticles. Journal of Physics and Chemistry of Solids, 144, 109488. doi: https://doi.org/10.1016/j.jpcs.2020.109488
- Firat, Y. E. (2020). Influence of current density on Al:NiO thin films via electrochemical deposition: Semiconducting and electrochromic properties. Materials Science in Semiconductor Processing, 109, 104958. doi: https://doi.org/10.1016/j.mssp.2020.104958
- El Fadli, K. I., Cerveny, R. S., Burt, C. C., Eden, P., Parker, D., Brunet, M. et. al. (2013). World Meteorological Organization Assessment of the Purported World Record 58°C Temperature Extreme at El Azizia, Libya (13 September 1922). Bulletin of the American Meteorological Society, 94 (2), 199–204. doi: https://doi.org/10.1175/bams-d-12-00093.1
- Da Rocha, M., He, Y., Diao, X., Rougier, A. (2018). Influence of cycling temperature on the electrochromic properties of WO3//NiO devices built with various thicknesses. Solar Energy Materials and Solar Cells, 177, 57–65. doi: https://doi.org/10.1016/j.solmat.2017.05.070
- Xie, X., Gao, C., Du, X., Zhu, G., Xie, W., Liu, P., Tang, Z. (2018). Improved Optical and Electrochromic Properties of NiOx Films by Low-Temperature Spin-Coating Method Based on NiOx Nanoparticles. Materials, 11 (5), 760. doi: https://doi.org/10.3390/ma11050760
- Thummavichai, K., Wang, N. N., Xia, Y. D., Zhu, Y. Q. (2016). Effect of low temperature treatment of tungsten oxide (WOx) thin films on the electrochromic and degradation behavior. 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC). doi: https://doi.org/10.1109/nmdc.2016.7777165
- Thummavichai, K., Trimby, L., Wang, N., Wright, C. D., Xia, Y., Zhu, Y. (2017). Low Temperature Annealing Improves the Electrochromic and Degradation Behavior of Tungsten Oxide (WOx) Thin Films. The Journal of Physical Chemistry C, 121 (37), 20498–20506. doi: https://doi.org/10.1021/acs.jpcc.7b06300
- Tajima, K., Hotta, H., Yamada, Y., Okada, M., Yoshimura, K. (2010). Degradation studies of electrochromic all-solid-state switchable mirror glass under various constant temperature and relative humidity conditions. Solar Energy Materials and Solar Cells, 94 (12), 2411–2415. doi: https://doi.org/10.1016/j.solmat.2010.08.027
- Tajima, K., Hotta, H., Yamada, Y., Okada, M., Yoshimura, K. (2011). Degradation Analysis of Electrochromic Switchable Mirror Glass Based on Mg–Ni Thin Film at Constant Temperature and Relative Humidity. Japanese Journal of Applied Physics, 50 (10), 105801. doi: https://doi.org/10.1143/jjap.50.105801
- Tajima, K., Yamada, Y., Okada, M., Yoshimura, K. (2010). Accelerated degradation studies on electrochromic switchable mirror glass based on magnesium–nickel thin film in simulated environment. Solar Energy Materials and Solar Cells, 94 (10), 1716–1722. doi: https://doi.org/10.1016/j.solmat.2010.05.034
- Tajima, K., Hotta, H., Yamada, Y., Okada, M., Yoshimura, K. (2012). Environmental durability of electrochromic switchable mirror glass at sub-zero temperature. Solar Energy Materials and Solar Cells, 104, 146–151. doi: https://doi.org/10.1016/j.solmat.2012.05.007
- Tajima, K., Yamada, Y., Okada, M., Yoshimura, K. (2011). Polyvinyl chloride seal layer for improving the durability of electrochromic switchable mirrors based on Mg–Ni thin film. Thin Solid Films, 519 (22), 8114–8118. doi: https://doi.org/10.1016/j.tsf.2011.05.063
- Kotok, V. A., Malyshev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH)2-Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: https://doi.org/10.1149/2.0071712jss
- Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
- Kotok, V., Kovalenko, V. (2018). A study of the effect of cycling modes on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 6 (5 (96)), 62–69. doi: https://doi.org/10.15587/1729-4061.2018.150577
- Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29, 449–454. doi: https://doi.org/10.1023/A:1003493711239
- Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
- Kotok, V. A., Kovalenko, V. L. (2019). Non-Metallic Films Electroplating on the Low-Conductivity Substrates: The Conscious Selection of Conditions Using Ni(OH)2 Deposition as an Example. Journal of The Electrochemical Society, 166 (10), D395–D408. doi: https://doi.org/10.1149/2.0561910jes
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Valerii Kotok, Vadym Kovalenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.