A study of the increased temperature influence on the electrochromic and electrochemical characteristics of Ni(OH)2-PVA composite films

Authors

  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Vadym Kovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732

DOI:

https://doi.org/10.15587/1729-4061.2020.205352

Keywords:

electrochromic device, electrochemical deposition, nickel hydroxide, template, polyvinyl alcohol, degradation, re-crystallization, basic solution, coloration, bleaching

Abstract

Electrochromic devices, as an element of “smart” windows, can be exposed to extreme temperatures due to their purpose and location. Exposure to high temperatures can change the characteristics of electrochromic devices and lead to malfunction. The present study is intended to fill in the gaps related to the stability of electrochemical and electrochromic parameters of one of the known materials – nickel hydroxide (II).

The present study highlights changes in some physico-chemical characteristics that occur during prolonged exposure to high temperature in different media. Ni(OH)2-polyvinyl alcohol, prepared using the cathodic template method, was aged at 80 °С under the air atmosphere and in the working electrolyte solution – 0.1 М KOH for 8 hours. The temperature was chosen based on the maximum registered temperature on Earth, possible film heat up and possible rapid degradation of electrochromic films.

As a result, it was found that degradation does occur in a basic solution, while on air some improvement was observed instead. The authors propose the mechanism that explains experimental results, which lies in “ageing” of active material Ni(OH)2. The latter occurs in the active mass of alkaline batteries. Possible methods for preventing degradation are also proposed, which can be realized with the use of thickened electrolytes or special films that are deposited onto the electrochrome

Author Biographies

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Senior Researcher

Competence center "Ecological technologies and systems"

Vadym Kovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Vyatka State University Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Senior Researcher

Competence center "Ecological technologies and systems"

References

  1. Hayashi, A., Akimoto, K., Sano, F., Mori, S., Tomoda, T. (2009). Evaluation of global warming impacts for different levels of stabilization as a step toward determination of the long-term stabilization target. Climatic Change, 98 (1-2), 87–112. doi: https://doi.org/10.1007/s10584-009-9663-6
  2. Cortés-Borda, D., Ruiz-Hernández, A., Guillén-Gosálbez, G., Llop, M., Guimerà, R., Sales-Pardo, M. (2015). Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach. Energy Policy, 77, 21–30. doi: https://doi.org/10.1016/j.enpol.2014.11.020
  3. Dincer, I., Hepbasli, A., Midilli, A., Karakoc, T. H. (Eds.) (2010). Global warming: Engineering solutions. Green Energy and Technology. Springer. doi: https://doi.org/10.1007/978-1-4419-1017-2
  4. Panja, P. (2019). Deforestation, Carbon dioxide increase in the atmosphere and global warming: A modelling study. International Journal of Modelling and Simulation, 1–11. doi: https://doi.org/10.1080/02286203.2019.1707501
  5. Smart Windows: Energy Efficiency with a View. Available at: https://www.nrel.gov/news/features/2010/1555.html
  6. Wang, S.-M., Liu, L., Chen, W.-L., Wang, E.-B. (2013). High performance visible and near-infrared region electrochromic smart windows based on the different structures of polyoxometalates. Electrochimica Acta, 113, 240–247. doi: https://doi.org/10.1016/j.electacta.2013.09.048
  7. Lee, S. J., Choi, D. S., Kang, S. H., Yang, W. S., Nahm, S., Han, S. H., Kim, T. (2019). VO2/WO3-Based Hybrid Smart Windows with Thermochromic and Electrochromic Properties. ACS Sustainable Chemistry & Engineering, 7 (7), 7111–7117. doi: https://doi.org/10.1021/acssuschemeng.9b00052
  8. Tang, Q., He, L., Yang, Y., Long, J., Fu, X.-K., Gong, C. (2016). Effects of substitution position on electrochemical, electrochromic, optical, and photoresponsive properties of azobenzenecarboxylic acid alkyl ester derivatives. Organic Electronics, 30, 200–206. doi: https://doi.org/10.1016/j.orgel.2015.11.010
  9. NuLi, Y. (2003). Electrochemical and electrochromic characteristics of Ta2O5–ZnO composite films. Solid State Ionics, 160 (1-2), 197–207. doi: https://doi.org/10.1016/s0167-2738(03)00162-0
  10. Cupelli, D., De Filpo, G., Chidichimo, G., Nicoletta, F. P. (2006). The electro-optical and electrochromic properties of electrolyte-liquid crystal dispersions. Journal of Applied Physics, 100 (2), 024515. doi: https://doi.org/10.1063/1.2219696
  11. Nicoletta, F. P., Chidichimo, G., Cupelli, D., De Filpo, G., De Benedittis, M., Gabriele, B. et. al. (2005). Electrochromic Polymer-Dispersed Liquid-Crystal Film: A New Bifunctional Device. Advanced Functional Materials, 15 (6), 995–999. doi: https://doi.org/10.1002/adfm.200400403
  12. Ghosh, A., Norton, B., Duffy, A. (2016). Daylighting performance and glare calculation of a suspended particle device switchable glazing. Solar Energy, 132, 114–128. doi: https://doi.org/10.1016/j.solener.2016.02.051
  13. Ghosh, A., Norton, B., Duffy, A. (2016). First outdoor characterisation of a PV powered suspended particle device switchable glazing. Solar Energy Materials and Solar Cells, 157, 1–9. doi: https://doi.org/10.1016/j.solmat.2016.05.013
  14. Su, C., Qiu, M., An, Y., Sun, S., Zhao, C., Mai, W. (2020). Controllable fabrication of α-Ni(OH)2 thin films with preheating treatment for long-term stable electrochromic and energy storage applications. Journal of Materials Chemistry C, 8 (9), 3010–3016. doi: https://doi.org/10.1039/c9tc06354d
  15. Kotok, V. A., Kovalenko, V. L., Zima, A. S., Kirillova, E. A., Burkov, A. A., Kobylinska, N. G. et. al. (2019). Optimization of electrolyte composition for the cathodic template deposition of Ni(OH)2 -based electrochromic films on FTO glass. ARPN Journal of Engineering and Applied Sciences, 14 (2), 344–353. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2019/jeas_0119_7562.pdf
  16. Kotok, V., Kovalenko, V. (2019). A study of an electrochromic device based on Ni(OH)2/PVA film with the mesh-like silver counter electrode. Eastern-European Journal of Enterprise Technologies, 5 (6 (101)), 49–55. doi: https://doi.org/10.15587/1729-4061.2019.181396
  17. Kotok, V., Kovalenko, V. (2020). Selection of the formation mode of a zinc mesh electrode for an electrochromic device with the possibility of energy recovery. Eastern-European Journal of Enterprise Technologies, 2 (6 (104)), 13–20. doi: https://doi.org/10.15587/1729-4061.2020.200559
  18. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2017/jeas_0717_6156.pdf
  19. Goel, R., Jha, R., Ravikant, C. (2020). Investigating the structural, electrochemical, and optical properties of p-type spherical nickel oxide (NiO) nanoparticles. Journal of Physics and Chemistry of Solids, 144, 109488. doi: https://doi.org/10.1016/j.jpcs.2020.109488
  20. Firat, Y. E. (2020). Influence of current density on Al:NiO thin films via electrochemical deposition: Semiconducting and electrochromic properties. Materials Science in Semiconductor Processing, 109, 104958. doi: https://doi.org/10.1016/j.mssp.2020.104958
  21. El Fadli, K. I., Cerveny, R. S., Burt, C. C., Eden, P., Parker, D., Brunet, M. et. al. (2013). World Meteorological Organization Assessment of the Purported World Record 58°C Temperature Extreme at El Azizia, Libya (13 September 1922). Bulletin of the American Meteorological Society, 94 (2), 199–204. doi: https://doi.org/10.1175/bams-d-12-00093.1
  22. Da Rocha, M., He, Y., Diao, X., Rougier, A. (2018). Influence of cycling temperature on the electrochromic properties of WO3//NiO devices built with various thicknesses. Solar Energy Materials and Solar Cells, 177, 57–65. doi: https://doi.org/10.1016/j.solmat.2017.05.070
  23. Xie, X., Gao, C., Du, X., Zhu, G., Xie, W., Liu, P., Tang, Z. (2018). Improved Optical and Electrochromic Properties of NiOx Films by Low-Temperature Spin-Coating Method Based on NiOx Nanoparticles. Materials, 11 (5), 760. doi: https://doi.org/10.3390/ma11050760
  24. Thummavichai, K., Wang, N. N., Xia, Y. D., Zhu, Y. Q. (2016). Effect of low temperature treatment of tungsten oxide (WOx) thin films on the electrochromic and degradation behavior. 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC). doi: https://doi.org/10.1109/nmdc.2016.7777165
  25. Thummavichai, K., Trimby, L., Wang, N., Wright, C. D., Xia, Y., Zhu, Y. (2017). Low Temperature Annealing Improves the Electrochromic and Degradation Behavior of Tungsten Oxide (WOx) Thin Films. The Journal of Physical Chemistry C, 121 (37), 20498–20506. doi: https://doi.org/10.1021/acs.jpcc.7b06300
  26. Tajima, K., Hotta, H., Yamada, Y., Okada, M., Yoshimura, K. (2010). Degradation studies of electrochromic all-solid-state switchable mirror glass under various constant temperature and relative humidity conditions. Solar Energy Materials and Solar Cells, 94 (12), 2411–2415. doi: https://doi.org/10.1016/j.solmat.2010.08.027
  27. Tajima, K., Hotta, H., Yamada, Y., Okada, M., Yoshimura, K. (2011). Degradation Analysis of Electrochromic Switchable Mirror Glass Based on Mg–Ni Thin Film at Constant Temperature and Relative Humidity. Japanese Journal of Applied Physics, 50 (10), 105801. doi: https://doi.org/10.1143/jjap.50.105801
  28. Tajima, K., Yamada, Y., Okada, M., Yoshimura, K. (2010). Accelerated degradation studies on electrochromic switchable mirror glass based on magnesium–nickel thin film in simulated environment. Solar Energy Materials and Solar Cells, 94 (10), 1716–1722. doi: https://doi.org/10.1016/j.solmat.2010.05.034
  29. Tajima, K., Hotta, H., Yamada, Y., Okada, M., Yoshimura, K. (2012). Environmental durability of electrochromic switchable mirror glass at sub-zero temperature. Solar Energy Materials and Solar Cells, 104, 146–151. doi: https://doi.org/10.1016/j.solmat.2012.05.007
  30. Tajima, K., Yamada, Y., Okada, M., Yoshimura, K. (2011). Polyvinyl chloride seal layer for improving the durability of electrochromic switchable mirrors based on Mg–Ni thin film. Thin Solid Films, 519 (22), 8114–8118. doi: https://doi.org/10.1016/j.tsf.2011.05.063
  31. Kotok, V. A., Malyshev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH)2-Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: https://doi.org/10.1149/2.0071712jss
  32. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
  33. Kotok, V., Kovalenko, V. (2018). A study of the effect of cycling modes on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 6 (5 (96)), 62–69. doi: https://doi.org/10.15587/1729-4061.2018.150577
  34. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29, 449–454. doi: https://doi.org/10.1023/A:1003493711239
  35. Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
  36. Kotok, V. A., Kovalenko, V. L. (2019). Non-Metallic Films Electroplating on the Low-Conductivity Substrates: The Conscious Selection of Conditions Using Ni(OH)2 Deposition as an Example. Journal of The Electrochemical Society, 166 (10), D395–D408. doi: https://doi.org/10.1149/2.0561910jes

Downloads

Published

2020-06-30

How to Cite

Kotok, V., & Kovalenko, V. (2020). A study of the increased temperature influence on the electrochromic and electrochemical characteristics of Ni(OH)2-PVA composite films. Eastern-European Journal of Enterprise Technologies, 3(6 (105), 6–12. https://doi.org/10.15587/1729-4061.2020.205352

Issue

Section

Technology organic and inorganic substances