Influence of flooded foam jets’ motion parameters on subsurface extinguishing of fires in tanks with petroleum products

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.206032

Keywords:

petroleum products, tank fires, subsurface extinguishing, foam concentrate

Abstract

One of the safest ways to extinguish fires in tanks with petroleum and petroleum products is subsurface extinguishing. For this mode, a foam concentrate with fluorinated stabilisers is used, the aqueous solution of which is able to spread and cover the surface of petroleum and petroleum products with a thin film. The article presents a mathematical model of the movement of a flooded non-free foam jet in a motor fuel medium, which adequately describes the real physical processes that occur during subsurface fire extinguishing in vertical steel tanks. The motion parameters of flooded low-foam foam jets in a tank with motor fuel were determined as those that would be optimal for transporting foam through the thickness of the fuel to its surface. It was specified that the movement of the flooded foam jet is characterised by a significant attenuation (from 36 to 1.5 m/s) of the initial velocity with its subsequent increase due to Archimedes’ principle. High values of the initial velocity of the jet lead to destruction of the foam and, accordingly, worsen fire extinguishing. A decrease in the initial velocity of the foam jet at a given flow rate should be carried out by increasing the corresponding number of foam jets with an initial velocity in the range from 2 to 3 m/s. Foam jets should be placed around a circle of a radius at which their mutual influence would be preserved, and the velocity of the combined foam jet should not exceed the maximum values recommended for a particular foam concentrate (3–5 m/s). It helps to improve the stability of the movement of the combined jet, to decrease the destruction of the foam during its movement, and to prevent the movement of the fuel to the combustion surface. The decisions made upon the implementation of the mathematical model are fully consistent with the results obtained during the experimental tests on extinguishing a class B model fire in a designed unit as a reduced version of the RVS-5000 tank.

Author Biographies

Tetiana Voitovych, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

Adjunct

Department of Emergencies Recovery

Vasyl Kovalyshyn, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

Doctor of Technical Sciences, Professor, Head of Department

Department of Emergencies Recovery

Yaroslav Novitskyi, Lviv Polytechnic National University S. Bandery str.,12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Technical Mechanics and Dynamics of Machines

Dmytro Voytovych, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

PhD, Associate Professor

Department of Fire Tactics and Emergency Rescue Operations

Pavlo Pastukhov, Lviv State University of Life Safety Kleparivska str., 35, Lviv, Ukraine, 79007

PhD, Researcher

Laboratory of Fire Safety Research

Volodymyr Firman, Ivan Franko National University of Lviv Universytetska str., 1, Lviv, Ukraine, 79000

PhD, Associate Professor

Department of Life Safety

References

  1. Kovalyshyn, V. V., Vasylieva, O. E., Koziar, N. M. (2007). Pinne hasinnia. Lviv: Spolom, 168.
  2. Nolan, D. P. (2011). Handbook of fire and explosion protection engineering principles for oil, gas, chemical and related facilities. Elsevier, 340.
  3. Sharovarnikov, A. F. (2000). Protivopozharnye peny. Sostav, svoystva, primenenie. Moscow: Znak, 445.
  4. Kovalyshyn, V. V., Kyryliv, Ya. B., Gusar, B. M., Voitovych, T. M., Kovalyshyn, Vol. V., Korniyenko, A. O., Chernetsky, V. V. (2017). Prospects of fire extinguishing with water fire extinguishers. Pozhezhna bezpeka, 31, 49–58.
  5. Sheinson, R. S., Williams, B. A., Green, C., Fleming, J. W., Anleitner, R., Ayers, S., Maranghides, A. (2002). The future of aqueous film forming foam (AFFF): Performance Parameters and Requirements. Available at: http://www.nist.gov/el/fire_research/upload/R0201327.pdf
  6. Xu, Z., Guo, X., Yan, L., Kang, W. (2020). Fire-extinguishing performance and mechanism of aqueous film-forming foam in diesel pool fire. Case Studies in Thermal Engineering, 17, 100578. doi: https://doi.org/10.1016/j.csite.2019.100578
  7. Nakakuki, A. (1981). Historical study of fire extinguishing in oil tanks equipped with a supply system under the layer. Haikai Hijutsu Kenko Kekaisi, 21 (2), 73–77.
  8. Nurimoto, H. (1977). Firefighting installations in oil storage facilities by introducing foam under a layer of petroleum product. Kasai, 27 (3), 11–19.
  9. Instruktsiya pro poriadok zastosuvannia i vyprobuvannia pinoutvoriuvachiv dlia pozhezhohasinnia. Nakaz Ministerstva nadzvychainykh sytuatsiy vid 24.11.2008 r. No. 851.
  10. Persson, H., Lönnermark, A. (2004). Tank fires: review of fire incidents 1951-2003: Brandforsk Project 513-021. Boræas: SP Sveriges Provnings- och Forskningsinstitut.
  11. Xu-Qing, L., Quan-Zhen, L., Hong, G. (2011). Study of fire fighting system to extinguish full surface fire of large scale floating roof tanks. Procedia Engineering, 11, 189–195. doi: https://doi.org/10.1016/j.proeng.2011.04.646
  12. Zhao, H., Liu, J. (2016). The Feasibility Study of Extinguishing Oil Tank Fire by Using Compressed Air Foam System. Procedia Engineering, 135, 61–66. doi: https://doi.org/10.1016/j.proeng.2016.01.080
  13. Vinogradov, S., Shakhov, S., Prysyazhniuk, V. (2017). Development of a Compressed Air Foam System. Problemy pozharnoy bezopasnosti, 42, 12–21. Available at: http://nbuv.gov.ua/UJRN/Ppb_2017_42_5
  14. Sharovarnikov, A. F., Molchanov, V. P., Voevoda, S. S., Sharovarnikov, S. A. (2007). Tushenie pozharov nefti i nefteproduktov. Moscow: Pozhnauka, 380.
  15. Korolchenko, D. A., Sharovarnikov, A. F. (2016). Factors which reduce fire extinguishing efficiency of sublayer system during suppression of the flame of oil products. Fire and Explosion Safety, 25 (4), 56–67. doi: https://doi.org/10.18322/pvb.2016.25.04.56-67
  16. Kokorin, V. V., Romanova, I. N., Khafizov, F. Sh. (2012). The problems of effective fire suppression of vertical steel storage tanks in the fuel layer. Electronic Scientific Journal “Oil and Gas Business”, 3, 255–260. Available at: http://ogbus.ru/authors/Kokorin/Kokorin_1.pdf
  17. Sharovarnikov, S. A., Korol’chenko, D. A., Lyapin, A. V. (2014). Extinguishing of the multicomponent composite fuels by aqueous film forming foam by sublayer way. Fire and Explosion Safety, 23 (6), 76–81.
  18. Mahley, H. S. (1975). Fight tank fires, subsurface. Hydrocarbon Process, 54 (8), 72–75.
  19. Instruktsiya shchodo hasinnia pozhezh u rezervuarakh iz naftoiu ta naftoproduktamy: NAPB 05.035-2004. Nakaz Ministerstva nadzvychainykh sytuatsiy Ukrainy vid 16.02.2004 r. No. 75.
  20. Pro zatverdzhennia Metodyky rozrakhunku syl i zasobiv, neobkhidnykh dlia hasinnia pozhezh u budivliakh i na terytoriyakh riznoho pryznachennia. Nakaz Ministerstva nadzvychainykh sytuatsiy Ukrainy vid 16.12.2011 No. 1341.
  21. Voitovych, T. M., Kovalyshyn, V. V., Chernetskyi, V. V. (2019). Design and calculation specifics of the subsurface fire extinguishing system. Fire Safety, 34, 21–27. doi: https://doi.org/10.32447/20786662.34.2019.04
  22. National Fire Protection Association (2010). NFPA 11: Standard for low-, medium-, and high-expansion foam. Quincy, MA.
  23. Voitovych, T. M., Gusar, B. M., Kovalyshyn, V. V., Koshelenko, V. V., Grushovinchuk, O. V. (2018). Research on domestically produced fire-fighting foam agents for subsurface fire extinguishing. Fire Safety, 32, 5–14. doi: https://doi.org/10.32447/20786662.32.2018.01
  24. Zhang, S., Gu, X. (1992). Design and flow control of subsurface injection system for mobile oil tanks. Proceedings of the 1st Asia-Oceania Symposium on Fire Science and Technology. International Association for Fire Safety Science. Available at: http://iafss.org/publications/aofst/1/348/view/aofst_1-348.pdf
  25. Alyamovskiy, A. A., Sobachkin, A. A., Odintsov, E. V., Haritonovich, A. I., Ponomarev, N. B. (2008). SolidWorks 2007/2008. Komp'yuternoe modelirovanie v inzhenernoy praktike. Sankt-Peterburg: BHV-Peterburg.
  26. Alyamovskiy, A. A. (2010). Inzhenernye raschety v SollidWorks Simulation. Moscow: DMK Press, 464.
  27. Alyamovskiy, A. A. (2012). SolidWorks Simulation. Kak reshat' prakticheskie zadachi. Sankt-Peterburg: BHV-Peterburg, 445.
  28. Dudareva, N. Yu., Zagayko, S. A. (2007). SolidWorks 2007. Sankt-Peterburg: BHV-Peterburg, 1328.
  29. Abramovich, G. N. (2011). Teoriya turbulentnyh struy. Reprintnoe vosproizvedenie izdaniya 1960 g. Moscow: EKOLIT, 720.
  30. Vozniak, L. V., Himer, P. R., Merdukh, M. I., Panevnyk, O. V. (2012). Hidravlika. Ivano-Frankivsk: IFNTUNH, 327.
  31. Bezrodniy, I. F. (Ed.) (2003). Ftorsinteticheskie plenkoobrazuyushchie penoobrazovateli UNISERAL. Rekomendatsii po ispol'zovaniyu pernoobrazovateley UNISERALAF 15-01, UNISERALAF 15-21, UNISERALAF 22. Moscow: OOO «PTV-TSentr».
  32. DSTU 7224:2011. Metrology. Pressure gauges, pressure-vacuum gauges, vacuum gauges, draft gauges, draft-head gauges, head gauges, with pneumatic output signals. Procedure of verification (calibration).

Downloads

Published

2020-06-30

How to Cite

Voitovych, T., Kovalyshyn, V., Novitskyi, Y., Voytovych, D., Pastukhov, P., & Firman, V. (2020). Influence of flooded foam jets’ motion parameters on subsurface extinguishing of fires in tanks with petroleum products. Eastern-European Journal of Enterprise Technologies, 3(10 (105), 6–17. https://doi.org/10.15587/1729-4061.2020.206032