Developing a technique for the removing of a gel layer in the process of membrane treatment of pectin extract

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.208984

Keywords:

pectin extract, membrane treatment, polarization layer, ultrafiltration concentration, vibration stirring

Abstract

A new technique for removing a gel layer from the membrane surface during the ultrafiltration concentration of pectin extract has been considered. An experimental setup has been designed and a procedure for processing the results of studying the process of the concentration of pectin extracts has been devised, using a technique of removing a gel layer from the membrane surface. The paper reports the results of studying the application of a vibration stirring technique to eliminate the gel layer and its effect on membrane performance. Mathematical models have been built and the modes to perform the process of the ultrafiltration of pectin extract by using vibration stirring have been determined.

The graphical dependences of the quantitative and qualitative characteristics of pectin concentrate (the concentration of pectin substances and dry substances in the concentrate and permeate) have been given that depend on the input parameters of the temperature and pressure of the ultrafiltration concentration process. An analysis of the given characteristics has made it possible to establish the rational input parameters for the process of concentrating pectin extracts. The rational operating parameters of the process of concentrating pectin extracts when using a new technique for eliminating the gel layer are the filtration pressure of 0.4–0.5 MPa, a temperature of 35...45 °С, a duration of 1.5–2.0 hours, and a vibration stirring speed of 1.5‒1.7 m/s.

This study was performed with the aim of intensifying the membrane concentration of pectin extracts, improving the technical level of the concentration process, and implementing the developed technique under industrial conditions. Based on the research results, the expediency of using a new technique for removing the gel layer has been established. Further implementation of these results in the food and processing industry would make it possible to apply them in the production of a wide range of pectin products

Author Biographies

Gregoriy Deynichenko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor, Head of Department

Department of Processes and Equipment for Food and Hospitality-Restaurant Industry named after M. Belyaev

Vasyl Guzenko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Senior Lecturer

Department of Processes and Equipment for Food and Hospitality-Restaurant Industry named after M. Belyaev

Dmytro Dmytrevskyi, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Processes and Equipment for Food and Hospitality-Restaurant Industry named after M. Belyaev

Vitalii Chervonyi, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Processes and Equipment for Food and Hospitality-Restaurant Industry named after M. Belyaev

Оleksandr Omelchenko, Mykhailo Tugan-Baranovsky Donetsk National University of Economics and Trade Tramvaina str., 16, Kryvyi Rih, Ukraine, 50005

PhD, Associate Professor

Department of General Engineering Disciplines and Equipment

Dmytro Horielkov, Mykhailo Tugan-Baranovsky Donetsk National University of Economics and Trade Tramvaina str., 16, Kryvyi Rih, Ukraine, 50005

PhD, Associate Professor

Department of General Engineering Disciplines and Equipment

Olga Melnik, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Power Supply and Energy Management

Olha Korolenko, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of Economics, Organization and Enterprise Management

References

  1. Minzanova, S., Mironov, V., Arkhipova, D., Khabibullina, A., Mironova, L., Zakirova, Y., Milyukov, V. (2018). Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers, 10 (12), 1407. doi: https://doi.org/10.3390/polym10121407
  2. Vladisavljević, G. T., Vukosavljević, P., Bukvić, B. (2003). Permeate flux and fouling resistance in ultrafiltration of depectinized apple juice using ceramic membranes. Journal of Food Engineering, 60 (3), 241–247. doi: https://doi.org/10.1016/s0260-8774(03)00044-x
  3. Tamova, M. Y., Barashkina, E. V., Zhuravlev, R. A., Tretyakova, N. R., Tsygankova, S. S. (2018). Innovative methods for producing pectin from different types of plant raw materials. New Technologies, 4, 79–84.
  4. Stephen, A. M., Phillips, G. O. (Eds.) (2006). Food Polysaccharides and Their Applications. CRC Press, 752. doi: https://doi.org/10.1201/9781420015164
  5. Ilina, I. A., Machneva, I. A., Chernutskiy, A. P. (2018). Concentration and purification of the pectin extracts by ultrafiltration method. Vestnik of the Russian Agricultural Science, 2, 45–48. doi: https://doi.org/10.30850/vrsn/2018/2/45-48
  6. Torkova, A. A., Lisitskaya, K. V., Filimonov, I. S., Glazunova, O. A., Kachalova, G. S., Golubev, V. N., Fedorova, T. V. (2018). Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLOS ONE, 13 (9), e0204261. doi: https://doi.org/10.1371/journal.pone.0204261
  7. Bhattacharjee, C., Saxena, V. K., Dutta, S. (2017). Fruit juice processing using membrane technology: A review. Innovative Food Science & Emerging Technologies, 43, 136–153. doi: https://doi.org/10.1016/j.ifset.2017.08.002
  8. Cai, M., Zhao, S., Liang, H. (2010). Mechanisms for the enhancement of ultrafiltration and membrane cleaning by different ultrasonic frequencies. Desalination, 263 (1-3), 133–138. doi: https://doi.org/10.1016/j.desal.2010.06.049
  9. Gomaa, H. G., Rao, S. (2011). Analysis of flux enhancement at oscillating flat surface membranes. Journal of Membrane Science, 374 (1-2), 59–66. doi: https://doi.org/10.1016/j.memsci.2011.03.011
  10. Lau, W., Ismail, A., Matsuura, T., Nazri, N., Yuliwati, E. (2015). Advanced Materials in Ultrafiltration and Nanofiltration Membranes. Handbook of Membrane Separations, 7–34. doi: https://doi.org/10.1201/b18319-4
  11. Zelepukin, Y. I., Zelepukin, S. Yu., Fedoruk, V. A., Bushmin, I. S. (2016). To the question of production of pectin from beet pulp. Proceedings of the Voronezh State University of Engineering Technologies, 2, 238–242. doi: https://doi.org/10.20914/2310-1202-2016-2-238-242
  12. Echavarría, A. P., García-Valls, R., Torras, C., Pagan, J., Ibarz, A. (2012). Effect of Pectinase Immobilization in a Polymeric Membrane on Ultrafiltration of Fluid Foods. Separation Science and Technology, 47 (6), 796–801. doi: https://doi.org/10.1080/01496395.2011.640095
  13. Yammine, S., Rabagliato, R., Vitrac, X., Mietton Peuchot, M., Ghidossi, R. (2019). Selecting ultrafiltration membranes for fractionation of high added value compounds from grape pomace extracts. OENO One, 53 (3). doi: https://doi.org/10.20870/oeno-one.2019.53.3.2343
  14. Brião, V. B., Tavares, C. R. G. (2012). Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration. Brazilian Journal of Chemical Engineering, 29 (2), 393–407. doi: https://doi.org/10.1590/s0104-66322012000200019
  15. Lutz, H. (Ed.) (2015). Ultrafiltration for Bioprocessing. Woodhead Publishing, 244. doi: https://doi.org/10.1016/c2013-0-18176-7
  16. Lobasenko, B. A., Semenov, A. G. (2013). Intensification of ultrafiltration concentrating by the separation of the concentration boundary layer. Foods and Raw Materials, 1 (1), 74–81. doi: https://doi.org/10.12737/1560
  17. Castro-Muñoz, R., Barragán-Huerta, B. E., Fíla, V., Denis, P. C., Ruby-Figueroa, R. (2017). Current Role of Membrane Technology: From the Treatment of Agro-Industrial by-Products up to the Valorization of Valuable Compounds. Waste and Biomass Valorization, 9 (4), 513–529. doi: https://doi.org/10.1007/s12649-017-0003-1
  18. Yapo, B. M., Wathelet, B., Paquot, M. (2007). Comparison of alcohol precipitation and membrane filtration effects on sugar beet pulp pectin chemical features and surface properties. Food Hydrocolloids, 21 (2), 245–255. doi: https://doi.org/10.1016/j.foodhyd.2006.03.016
  19. Deynychenko, G., Guzenko, V., Dmytrevskyi, D., Chervonyi, V., Kolisnichenko, T., Omelchenko, O. et. al. (2018). Study of the new method to intensify the process of extraction of beet pulp. Eastern-European Journal of Enterprise Technologies, 4 (11 (94)), 15–20. doi: https://doi.org/10.15587/1729-4061.2018.140126
  20. Berk, Z. (2009). Food process Engineering and Technology. Academic Press, 624. doi: https://doi.org/10.1016/b978-0-12-373660-4.x0001-4
  21. Ostapchuk, M. V., Stankevych, H. M. (2006). Matematychne modeliuvannia na EOM. Odessa: Druk, 313.
  22. Deinychenko, G., Mazniyak, Z., Kramarenko, D., Guzenko, V. (2015). Determination of ultrafiltration membranes shrinkage factor. Ukrainian Food Journal, 4 (2), 328–334.

Downloads

Published

2020-08-31

How to Cite

Deynichenko, G., Guzenko, V., Dmytrevskyi, D., Chervonyi, V., Omelchenko О., Horielkov, D., Melnik, O., & Korolenko, O. (2020). Developing a technique for the removing of a gel layer in the process of membrane treatment of pectin extract. Eastern-European Journal of Enterprise Technologies, 4(11 (106), 63–69. https://doi.org/10.15587/1729-4061.2020.208984

Issue

Section

Technology and Equipment of Food Production