Implementation the fuzzy modeling technology by means of fuzzyTECH into the process of management the riskiness of business entities activity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.209836

Keywords:

fuzzy modelling, risks of activity, fuzzy set tools, linguistic variable

Abstract

The study was carried out as essential for increasing the importance of the issue of introducing fuzzy modelling by means of fuzzyTECH to manage the risks of activities. It has been determined that the feasibility of using fuzzyTECH-based fuzzy modelling is explained by the fact that there is a possibility to specify the levels and values of linguistic variables for these levels. Moreover, the fuzzyTECH software package makes it possible to automate this process. A block diagram of the algorithm was built to introduce fuzzy modelling by means of fuzzyTECH into managing the risks of economic entities. The proposed steps are general for use by economic entities in various fields of activity. Based on the constructed block diagram of the managerial decision-making algorithm, it is advisable to apply it at the level of intermediate values of the intervals of each individual indicator, as well as for the obtained levels of risk of the activities of economic entities. These levels of risk were determined to be very high, high, medium, low, and very low. Depending on the level of risk to economic entities, it is advisable to develop appropriate measures and make managerial decisions. It is essential to include among them the development of measures for quick and gradual responses, tactical and strategic, as well as measures already at the level of the economic entity’s strategy. In order to test the block of the algorithm responsible for the assessment, the system of techniques for assessing the risks of activities was tested for the studied economic entities. The intervals of the values of the scale selected to assess to indicators were obtained; a fuzzy model to estimate the risks of the economic entities by means of fuzzyTECH was built, set, and tested, and a system of fuzzy inference was obtained. Using the tools of fuzzy sets, a model for calculating the number of points for the aggregate assessment of the risks of the researched economic entities was built. It constitutes the preconditions for the transfer of the obtained scientific and practical results already into the system of risk-oriented management of economic entities

Author Biography

Svitlana Achkasova, Simon Kuznets Kharkiv National University of Economics Nauky ave., 9-A, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of Banking and Financial Services

References

  1. Leonenkov, A. V. (2003). Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH. Sankt-Peterburg: BHV-Pererburg, 736.
  2. Liuta, G. V., Pavlenko, I. A. (2017). Influence of innovation technologies on the management system of the enterprise. Economy and Society. Ekonomika i suspilstvo, 12, 298–303.
  3. Maibutnie rehuliuvannia rynku strakhuvannia v Ukraini (2020). Available at: https://bank.gov.ua/admin_uploads/article/White_paper_insurance_fin_pr_2020-04-22.pdf?v=4
  4. Tsidylo, I. M. (2013). Prohramni kompleksy ta seredovyshcha nechitkoho modeliuvannia pedahohichnykh yavyshch. Suchasni informatsiyni tekhnolohiyi ta innovatsiini metodyky navchannia v pidhotovtsi fakhivtsiv: metodolohiya, teoriya, dosvid, problemy, 36, 460–464.
  5. Díaz Córdova, J. F., Coba Molina, E., Navarrete López, P. (2017). Fuzzy logic and financial risk. A proposed classification of financial risk to the cooperative sector. Contaduría y Administración, 62 (5), 1687–1703. doi: https://doi.org/10.1016/j.cya.2017.10.001
  6. Morillas Raya, A. (2006). Introducción al análisis de datos difusos. Available at: https://www.eumed.net/libros-gratis/2006b/amr/
  7. Asadi, P., Zeidi, J. R., Mojibi, T., Yazdani-Chamzini, A., Tamošaitienė, J. (2018). Project risk evaluation by using a new fuzzy model based on elena guideline. Journal of Civil Engineering and Management, 24 (4), 284–300. doi: https://doi.org/10.3846/jcem.2018.3070
  8. Balzekiene, A., Gaule, E., Jasinevicius, R., Kazanavicius, E., Petrauskas, V. (2015). Risk Evaluation: The Paradigm and Tools. Information and Software Technologies, 330–342. doi: https://doi.org/10.1007/978-3-319-24770-0_29
  9. Oliynik, V. M. (2015). Finansova stiykist strakhovykh kompaniy. Sumy: Universytetska knyha, 287.
  10. Olkhovska, O. L. (2013). Modeliuvannia finansovoho stanu strakhovoi kompaniyi iz zastosuvanniam aparatu nechitkoi lohiky. Neiro-nechitki tekhnolohiyi modeliuvannia v ekonomitsi, 2, 119–134.
  11. Sanchez-Roger, Oliver-Alfonso, Sanchís-Pedregosa. (2019). Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises. Mathematics, 7(11), 1091. doi: https://doi.org/10.3390/math7111091
  12. Shapiro, A. F. (2004). Fuzzy logic in insurance. Insurance: Mathematics and Economics, 35 (2), 399–424. doi: https://doi.org/10.1016/j.insmatheco.2004.07.010
  13. Shapiro, A. F., Koissi, M.-C. (2015). Risk Assessment Applications of Fuzzy Logic. Society of Actuaries, 112. Available at: https://www.soa.org/globalassets/assets/Files/Research/Projects/2015-risk-assess-apps-fuzzy-logic.pdf
  14. Nota, G., Gregorio, M. (2010). A Model for Process Oriented Risk Managenent. IntechOpen. Available at: https://www.intechopen.com/books/advances-in-risk-management/a-model-for-process-oriented-risk-managenent
  15. Tokmakov, A. N. (2002). Programmnyy kompleks dlya formalizatsii ekspertnyh znaniy pri nechetkom (fazzi) modelirovanii. Sankt-Peterburg, 163.
  16. fuzzyTECH. Available at: https://www.fuzzytech.com/
  17. Wróblewski, R. (2011). Zarządzanie ryzykiem w przedsiębiorstwie. Zeszyty Naukowe UNIWERSYTETU PRZYRODNICZO-HUMANISTYCZNEGO w SIEDLCACH. Seria: Administracja i Zarządzanie, 9, 9–31.
  18. Vnukova, N. M., Smoliak, V. A. (2006). Ekonomichna otsinka ryzyku diialnosti pidpryiemstv: problemy teoriyi ta praktyky. Kharkiv: VD «INZhEK», 181.
  19. Сhyprina, I. V. (2012). A concept and classification of risks are inentrepreneurial activity. Zbirnyk naukovykh prats VNAU. Seriya: Ekonomichni nauky, 4 (70), 187–194.
  20. Smoliak, V. A. (2004). Alhorytmizatsiya protsedury otsinky ryzyku diyalnosti pidpryiemstv. Upravlinnia rozvytkom, 2, 104–105.
  21. Metodyka provedennia orhanamy derzhavnoi kontrolno-reviziynoi sluzhby derzhavnoho finansovoho audytu diyalnosti subiektiv hospodariuvannia. Nakaz vid 9 zhovtnia 2007 roku N 232. Available at: https://ips.ligazakon.net/document/view/fin32624?an=300&ed=2007_10_09
  22. Garetovskiy, N. V. (Ed.) (1988). Finansovo-kreditnyy slovar'. Vol. 3. Moscow: Finansy i statistika, 266.
  23. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: https://doi.org/10.1016/s0019-9958(65)90241-x
  24. Zadeh, L. A. (2012). Fuzzy LogicFuzzy logic. Computational Complexity, 1177–1200. doi: https://doi.org/10.1007/978-1-4614-1800-9_73
  25. Zeng, J., An, M., Smith, N. J. (2007). Application of a fuzzy based decision making methodology to construction project risk assessment. International Journal of Project Management, 25 (6), 589–600. doi: https://doi.org/10.1016/j.ijproman.2007.02.006
  26. Demchenko, H. V. (2017). Application of fuzzy logic apparatus in the formation of complex estimation of organizational support for the activation of innovative activity of the industrial enterprise. Naukovyi visnyk Mizhnarodnoho humanitarnoho universytetu. Seriya: «Ekonomika i menedzhment», 26 (1), 79–85.
  27. Demkin, I. V., Tsar'kov, I. N., Nikonov, I. M., An'shin, V. M. (2008). Primenenie teorii nechetkih mnozhestv k zadache formirovaniya portfelya proektov. Problemy analiza riska, 3, 8–21.
  28. Prytula, N. I. (2007). Rozroblennia sposobu shkalnoho vymiru otsinky finansovoho stanu pidpryiemstv-emitentiv. Ekonomika rozvytku, 3, 87–89.
  29. Vnukova, N. M., Prytula, N. I. (2007). Metodyka kredytno-reitynhovoi otsinky pidpryiemstv-emitentiv za Natsionalnoiu reitynhovoiu shkaloiu. Svidotstvo pro reiestratsiu avtorskoho prava na tvir No. 22757. Ofitsiynyi biuleten «Avtorske pravo i sumizhni prava», 14.
  30. Zaks, L.; Adlera, Yu. P., Gorskogo, V. M. (Eds.) (1976). Statisticheskoe otsenivanie. Moscow: Statistika, 598.
  31. Nedosekin, A. O. Kompleksnaya otsenka riska bankrotstva korporatsii na osnove nechetkih opisaniy. Available at: http://www.ifel.ru/br7/3.pdf
  32. Achkasova, S. A. (2014). Obgruntuvannia instrumentariu otsiniuvannia ryzykiv strakhovykh kompaniy. Rozvytok systemy upravlinnia ryzykamy rynku finansovykh posluh. Kharkiv: Ekskliuzyv, 112–125.
  33. Kliuiev, O., Vnukova, N., Hlibko, S., Brynza, N, Davydenko, D. (2020). Estimation of the Level of Interest and Modeling of the Topic of Innovation Through Search in Google. Proceedings of the 4th International Conference on Computational Linguistic and Intelligent Systems (COLINS 2020), 523–535.
  34. Prokopyshyn, L. M. (2008). Upravlinski innovatsiyi ta osoblyvosti yikh vykorystannia na mashynobudivnykh pidpryiemstvakh v suchasnykh umovakh hospodariuvannia. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 628, 628–633.
  35. Shevliuga, O. G., Olefirenko, O. M. (2011). Research of the technological innovation impact in the technology market and enterprise development. Marketynh i menedzhment innovatsiy, 4 (1), 38–44.
  36. Trynchuk, V., Khovrak, I., Dankiewicz, R., Ostrowska-Dankiewicz, A., Chushak-Holoborodko, A. (2019). The role of universities in disseminating the social responsibility practices of insurance companies. Problems and Perspectives in Management, 17 (2), 449–461. doi: https://doi.org/10.21511/ppm.17(2).2019.35
  37. Hospodarskyi kodeks Ukrainy No. 436-IV. Available at: https://zakon.rada.gov.ua/laws/show/436-15
  38. Pro zatverdzhennia Polozhennia pro oboviazkovi kryteriyi i normatyvy dostatnosti kapitalu ta platospromozhnosti, likvidnosti, prybutkovosti, yakosti aktyviv ta ryzykovosti operatsiy strakhovyka. Rozporiadzhennia No. 850. 07.06.2018. Available at: https://zakon.rada.gov.ua/laws/show/z0782-18
  39. Pareto principle. Available at: https://en.wikipedia.org/wiki/Pareto_principle
  40. Richnyi Zvit pro upravlinnia Pryvatnoho aktsionernoho tovarystva «Strakhova kompaniya «FORTE LAIF». Available at: https://forte-life.com.ua/img/documentation/2018_zvit_pro_upravlinnya.pdf
  41. Zvit pro upravlinnia Pryvatnoho aktsionernoho tovarystva «Strakhova kompaniya «TAS» za 2019 rik. Available at: https://taslife.com.ua/wp-content/uploads/2020/04/zvit-pro-upravlinnya-2019.pdf
  42. Finansovi zvity Pryvatnoho aktsionernoho tovarystva «SK «TAS». Available at: https://taslife.com.ua/important_info/finansovi-zvity
  43. Zvit kerivnytstva (zvit pro upravlinnia): kompetentsiya orhaniv upravlinnia shchodo pytan; obmezhennia povnovazhen vykonavchoho orhanu pryimaty rishennia pro ukladennia dohovoriv; polozhennia pro konflikt interesiv. Available at: https://stockmarket.gov.ua/cabinet/xml/show/auditinfo/10080
  44. Publichna informatsiya. Pryvatne aktsionerne tovarystvo «Strakhova kompaniya «UNIKA». Available at: https://uniqa.ua/ua/about_us/initial_data/
  45. Pryvatne aktsionerne tovarystvo «METLAIF». Finansova zvitnist ta zvit nezalezhnoho audytora za rik, shcho zakinchyvsia 31 hrudnia 2019 roku. Available at: https://www.metlife.ua/content/dam/metlifecom/ua/PDFs/financial-reports/2019/2019_Financials_audited_report.pdf
  46. Zvitnist MetLaif. Available at: https://www.metlife.ua/about-us/reports/
  47. Zvit nezalezhnoho audytora shchodo richnoi finansovoi zvitnosti Pryvatnoho aktsionernoho tovarystva «Ukrainska Aktsionerna SK ASKA - Zhyttia» stanom na 31 hrudnia 2019 roku. Available at: https://aska-life.com.ua/media/uploads/2020/04/09/-2019.pdf
  48. Zvit nezalezhnoho audytora shchodo richnoi finansovoi zvitnosti Pryvatnoho aktsionernoho tovarystva «Ukrainska Aktsionerna SK ASKA - Zhyttia» stanom na 31 hrudnia 2018 roku. Available at: https://aska-life.com.ua/media/uploads/2019/04/19/_-__2018-15-04-19.pdf
  49. Browne, M. J., Carson, J. M., Hoyt, R. E. (2001). Dynamic Financial Models of Life Insurers. North American Actuarial Journal, 5 (2), 11–26. doi: https://doi.org/10.1080/10920277.2001.10595981

Downloads

Published

2020-10-31

How to Cite

Achkasova, S. (2020). Implementation the fuzzy modeling technology by means of fuzzyTECH into the process of management the riskiness of business entities activity. Eastern-European Journal of Enterprise Technologies, 5(3 (107), 39–54. https://doi.org/10.15587/1729-4061.2020.209836

Issue

Section

Control processes