Studying the properties of a robust algorithm for identifying linear objects, which minimizes a combined functional

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210129

Keywords:

combined functional, gradient algorithm, weighing parameter, asymptomatic assessment, identification accuracy

Abstract

This paper addresses the task of identifying the parameters of a linear object in the presence of non-Gaussian interference. The identification algorithm is a gradient procedure for minimizing the combined functional. The combined functional, in turn, consists of the fourth-degree functional and a modular functional, whose weights are set using a mixing parameter. Such a combination of functionals makes it possible to obtain estimates that demonstrate robust properties. We have determined the conditions for the convergence of the applied procedure in the mean and root-mean-square measurements in the presence of non-Gaussian interference. In addition, expressions have been obtained to determine the optimal values of the algorithm's parameters, which ensure its maximum convergence rate. Based on the estimates obtained, the asymptomatic and non-asymptotic values of errors in estimating the parameters and identification errors. Because the resulting expressions contain a series of unknown parameters (the values of signal and interference variances), their practical application requires that the estimates of these parameters should be used.

We have investigated the issue of stability of the steady identification process and determined the conditions for this stability. It has been shown that determining these conditions necessitates solving the third-degree equations, whose coefficients depend on the specificity of the problem to be solved. The resulting ratios are rather cumbersome but their simplification allows for a qualitative analysis of stability issues. It should be noted that all the estimates reported in this work depend on the choice of a mixing parameter, the task of determining which remains to be explored.

The estimates obtained in this paper allow the researcher to pre-evaluate the capabilities of the identification algorithm and the effectiveness of its use in solving practical problems.

Author Biographies

Oleg Rudenko, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkіv, Ukraine, 61166

Doctor of Technical Sciences, Professor, Head of Department

Department of Сomputer Intelligent Technologies and Systems

Oleksandr Bezsonov, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkіv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Сomputer Intelligent Technologies and Systems

Oleh Lebediev, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkіv, Ukraine, 61166

PhD, Associate Professor

Department of Electronic Computers

Valentyn Lebediev, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkіv, Ukraine, 61166

Postgraduate Student

Department of Electronic Computers

Kiril Oliinyk, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkіv, Ukraine, 61166

Postgraduate Student

Department of Informatics

References

  1. Bedel'baeva, A. A. (1978). Relay estimation algorithm. Avtomat. i Telemekh., 39 (1), 87–95.
  2. Shao, T., Zheng, Y. R., Benesty, J. (2010). An Affine Projection Sign Algorithm Robust Against Impulsive Interferences. IEEE Signal Processing Letters, 17 (4), 327–330. doi: https://doi.org/10.1109/lsp.2010.2040203
  3. Shin, J., Yoo, J., Park, P. (2012). Variable step-size affine projection sign algorithm. Electronics Letters, 48 (9), 483. doi: https://doi.org/10.1049/el.2012.0751
  4. Lu, L., Zhao, H., Li, K., Chen, B. (2015). A Novel Normalized Sign Algorithm for System Identification Under Impulsive Noise Interference. Circuits, Systems, and Signal Processing, 35(9), 3244–3265. doi: https://doi.org/10.1007/s00034-015-0195-1
  5. Huang, H.-C., Lee, J. (2012). A New Variable Step-Size NLMS Algorithm and Its Performance Analysis. IEEE Transactions on Signal Processing, 60 (4), 2055–2060. doi: https://doi.org/10.1109/tsp.2011.2181505
  6. Casco-Sánchez, F. M., Medina-Ramírez, R. C., López-Guerrero, M. (2011). A New Variable Step-Size NLMS Algorithm and its Performance Evaluation in Echo Cancelling Applications. Journal of Applied Research and Technology, 9 (03). doi: https://doi.org/10.22201/icat.16656423.2011.9.03.425
  7. Huber, P. J. (1977). Robust methods of estimation of regression coefficients. Series Statistics, 8 (1), 41–53. doi: https://doi.org/10.1080/02331887708801356
  8. Hampel, F. R. (1974). The Influence Curve and its Role in Robust Estimation. Journal of the American Statistical Association, 69 (346), 383–393. doi: https://doi.org/10.1080/01621459.1974.10482962
  9. Adamczyk, T. (2017). Application of the Huber and Hampel M-estimation in real estate value modeling. Geomatics and Environmental Engineering, 11 (1), 15. doi: https://doi.org/10.7494/geom.2017.11.1.15
  10. Rudenko, O. G., Bezsonov, O. O. (2011). Robust training of radial basis networks. Cybernetics and Systems Analysis, 47 (6), 863–870. doi: https://doi.org/10.1007/s10559-011-9365-8
  11. Rudenko, O. G., Bezsonov, O. O. (2014). Robust Neuroevolutionary Identification of Nonlinear Nonstationary Objects. Cybernetics and Systems Analysis, 50 (1), 17–30. doi: https://doi.org/10.1007/s10559-014-9589-5
  12. Rudenko, O. G., Bezsonov, O. O., Rudenko, S. O. (2013). Robust identification of nonlinear objects with the help of an evolving radial basis network. Cybernetics and Systems Analysis, 49 (2), 173–182. doi: https://doi.org/10.1007/s10559-013-9497-0
  13. Rudenko, O., Bezsonov, O. (2011). Function Approximation Using Robust Radial Basis Function Networks. Journal of Intelligent Learning Systems and Applications, 03 (01), 17–25. doi: https://doi.org/10.4236/jilsa.2011.31003
  14. Chambers, J. A., Tanrikulu, O., Constantinides, A. G. (1994). Least mean mixed-norm adaptive filtering. Electronics Letters, 30 (19), 1574–1575. doi: https://doi.org/10.1049/el:19941060
  15. Rakesh, P., Kumar, T. K., Albu, F. (2019). Modified Least-Mean Mixed-Norm Algorithms For Adaptive Sparse System Identification Under Impulsive Noise Environment. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). doi: https://doi.org/10.1109/tsp.2019.8768813
  16. Papoulis, E. V., Stathaki, T. (2004). A Normalized Robust Mixed-Norm Adaptive Algorithm for System Identification. IEEE Signal Processing Letters, 11 (1), 56–59. doi: https://doi.org/10.1109/lsp.2003.819353
  17. Arenas-García, J., Figueiras-Vidal, A. R. (2005). Adaptive combination of normalised filters for robust system identification. Electronics Letters, 41 (15), 874. doi: https://doi.org/10.1049/el:20051936
  18. Rudenko, O., Bezsonov, O., Lebediev, O., Serdiuk, N. (2019). Robust identification of non-stationary objects with nongaussian interference. Eastern-European Journal of Enterprise Technologies, 5 (4 (101)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.181256
  19. Walach, E., Widrow, B. (1984). The least mean fourth (LMF) adaptive algorithm and its family. IEEE Transactions on Information Theory, 30 (2), 275–283. doi: https://doi.org/10.1109/tit.1984.1056886
  20. Bershad, N. J., Bermudez, J. C. M. (2011). Mean-square stability of the Normalized Least-Mean Fourth algorithm for white Gaussian inputs. Digital Signal Processing, 21 (6), 694–700. doi: https://doi.org/10.1016/j.dsp.2011.06.002
  21. Eweda, E., Zerguine, A. (2011). New insights into the normalization of the least mean fourth algorithm. Signal, Image and Video Processing, 7 (2), 255–262. doi: https://doi.org/10.1007/s11760-011-0231-y
  22. Eweda, E. (2012). Global Stabilization of the Least Mean Fourth Algorithm. IEEE Transactions on Signal Processing, 60 (3), 1473–1477. doi: https://doi.org/10.1109/tsp.2011.2177976
  23. Eweda, E., Bershad, N. J. (2012). Stochastic Analysis of a Stable Normalized Least Mean Fourth Algorithm for Adaptive Noise Canceling With a White Gaussian Reference. IEEE Transactions on Signal Processing, 60 (12), 6235–6244. doi: https://doi.org/10.1109/tsp.2012.2215607
  24. Hubscher, P. I., Bermudez, J. C. M., Nascimento, Ví. H. (2007). A Mean-Square Stability Analysis of the Least Mean Fourth Adaptive Algorithm. IEEE Transactions on Signal Processing, 55 (8), 4018–4028. doi: https://doi.org/10.1109/tsp.2007.894423
  25. Zhang, S., Zhang, J. (2015). Fast stable normalised least-mean fourth algorithm. Electronics Letters, 51 (16), 1276–1277. doi: https://doi.org/10.1049/el.2015.0421
  26. Guan, S., Meng, C., Biswal, B. (2019). Optimal step-size of least mean absolute fourth algorithm in low SNR. arXiv. Available at: https://arxiv.org/ftp/arxiv/papers/1908/1908.08165.pdf
  27. Asad, S. M., Moinuddin, M., Zerguine, A., Chambers, J. (2019). A robust and stable variable step-size design for the least-mean fourth algorithm using quotient form. Signal Processing, 162, 196–210. doi: https://doi.org/10.1016/j.sigpro.2019.04.021
  28. Bin Mansoor, U., Mayyala, Q., Moinuddin, M., Zerguine, A. (2017). Quasi-Newton least-mean fourth adaptive algorithm. 2017 25th European Signal Processing Conference (EUSIPCO). doi: https://doi.org/10.23919/eusipco.2017.8081689
  29. Sadiq, A., Usman, M., Khan, S., Naseem, I., Moinuddin, M., Al-Saggaf, U. M. (2019). q-LMF: Quantum Calculus-Based Least Mean Fourth Algorithm. Fourth International Congress on Information and Communication Technology, 303–311. doi: https://doi.org/10.1007/978-981-15-0637-6_25
  30. Zerguine, A., Cowan, C. F. N., Bettayeb, M. (1996). LMS-LMF adaptive scheme for echo cancellation. Electronics Letters, 32 (19), 1776. doi: https://doi.org/10.1049/el:19961202
  31. Zerguine, A., Aboulnasr, T. (2000). Convergence analysis of the variable weight mixed-norm LMS-LMF adaptive algorithm. Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154). doi: https://doi.org/10.1109/acssc.2000.910959
  32. Zerguine, A. (2012). A variable-parameter normalized mixed-norm (VPNMN) adaptive algorithm. EURASIP Journal on Advances in Signal Processing, 2012 (1). doi: https://doi.org/10.1186/1687-6180-2012-55
  33. Rudenko, O., Bezsonov, O., Serdiuk, N., Oliinyk, K., Romanyk, O. (2020). Workable identification of objects based on minimization of combined functional. Information Processing Systems, 1 (160), 80–88. doi: https://doi.org/10.30748/soi.2020.160.10
  34. Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs. IEEE Transactions on Information Theory, 4 (2), 69–72. doi: https://doi.org/10.1109/tit.1958.1057444
  35. Gladyshev, E. G. (1965). On Stochastic Approximation. Theory of Probability & Its Applications, 10 (2), 275–278. doi: https://doi.org/10.1137/1110031
  36. Spiegel, M. R., Lipschutz, S., Liu, J. (2008). Mathematical Handbook of Formulas and Tables. McGraw Hill.

Downloads

Published

2020-08-31

How to Cite

Rudenko, O., Bezsonov, O., Lebediev, O., Lebediev, V., & Oliinyk, K. (2020). Studying the properties of a robust algorithm for identifying linear objects, which minimizes a combined functional. Eastern-European Journal of Enterprise Technologies, 4(4 (106), 37–46. https://doi.org/10.15587/1729-4061.2020.210129

Issue

Section

Mathematics and Cybernetics - applied aspects