Дослідження властивостей робастного алгоритму ідентифікація лінійних об'єктів, мінімізуючого комбінований функціонал
DOI:
https://doi.org/10.15587/1729-4061.2020.210129Ключові слова:
комбінований функціонал, градієнтний алгоритм, параметр зважування, асимптотична оцінка, точність ідентифікаціїАнотація
Розглядається задача ідентифікації параметрів лінійного об'єкта за наявністю негаусівських завад. Алгоритм ідентифікації є градієнтною процедурою мінімізації комбінованого функціоналу. Комбінований функціонал, в свою чергу, складається з функціоналу четвертого ступеня та модульного, ваги яких встановлюються за допомогою параметра змішування. Така комбінація функціоналів дозволяє отримати оцінки, що володіють робастними властивостями. Визначено умови збіжності процедури, що застосовується, в середньому і середньоквадратичному за наявністю негаусівських завад вимірів. Крім того, отримано вирази для визначення оптимальних значень параметрів алгоритму, що забезпечують його максимальну швидкість збіжності. На основі отриманих оцінок визначено асимптотичні та не асимптотичні значення похибок оцінювання параметрів и похибок ідентифікації. У зв’язку з тим, що отримані вирази містять ряд невідомих параметрів (значення дисперсій сигналів і завад), для їх практичного застосування слід використовувати оцінки цих параметрів.
Досліджено питання сталості усталеного процесу ідентифікації та визначено умови цієї сталості. Показано, що для визначення цих умов необхідно вирішувати рівняння третього ступеня, коефіцієнти якого залежать від особливостей задачі, яка вирішується. Отримані співвідношення є досить громіздкими, однак їх спрощення дозволяє провести якісний аналіз питань сталості. Слід зазначити, що всі отримані в роботі оцінки залежать від вибору параметра змішування, проблема визначення якого залишається відкритою.
Отримані в даній роботі оцінки дозволяють досліднику попередньо оцінити можливості алгоритму ідентифікації та ефективність його використання при вирішенні практичних задач
Посилання
- Bedel'baeva, A. A. (1978). Relay estimation algorithm. Avtomat. i Telemekh., 39 (1), 87–95.
- Shao, T., Zheng, Y. R., Benesty, J. (2010). An Affine Projection Sign Algorithm Robust Against Impulsive Interferences. IEEE Signal Processing Letters, 17 (4), 327–330. doi: https://doi.org/10.1109/lsp.2010.2040203
- Shin, J., Yoo, J., Park, P. (2012). Variable step-size affine projection sign algorithm. Electronics Letters, 48 (9), 483. doi: https://doi.org/10.1049/el.2012.0751
- Lu, L., Zhao, H., Li, K., Chen, B. (2015). A Novel Normalized Sign Algorithm for System Identification Under Impulsive Noise Interference. Circuits, Systems, and Signal Processing, 35(9), 3244–3265. doi: https://doi.org/10.1007/s00034-015-0195-1
- Huang, H.-C., Lee, J. (2012). A New Variable Step-Size NLMS Algorithm and Its Performance Analysis. IEEE Transactions on Signal Processing, 60 (4), 2055–2060. doi: https://doi.org/10.1109/tsp.2011.2181505
- Casco-Sánchez, F. M., Medina-Ramírez, R. C., López-Guerrero, M. (2011). A New Variable Step-Size NLMS Algorithm and its Performance Evaluation in Echo Cancelling Applications. Journal of Applied Research and Technology, 9 (03). doi: https://doi.org/10.22201/icat.16656423.2011.9.03.425
- Huber, P. J. (1977). Robust methods of estimation of regression coefficients. Series Statistics, 8 (1), 41–53. doi: https://doi.org/10.1080/02331887708801356
- Hampel, F. R. (1974). The Influence Curve and its Role in Robust Estimation. Journal of the American Statistical Association, 69 (346), 383–393. doi: https://doi.org/10.1080/01621459.1974.10482962
- Adamczyk, T. (2017). Application of the Huber and Hampel M-estimation in real estate value modeling. Geomatics and Environmental Engineering, 11 (1), 15. doi: https://doi.org/10.7494/geom.2017.11.1.15
- Rudenko, O. G., Bezsonov, O. O. (2011). Robust training of radial basis networks. Cybernetics and Systems Analysis, 47 (6), 863–870. doi: https://doi.org/10.1007/s10559-011-9365-8
- Rudenko, O. G., Bezsonov, O. O. (2014). Robust Neuroevolutionary Identification of Nonlinear Nonstationary Objects. Cybernetics and Systems Analysis, 50 (1), 17–30. doi: https://doi.org/10.1007/s10559-014-9589-5
- Rudenko, O. G., Bezsonov, O. O., Rudenko, S. O. (2013). Robust identification of nonlinear objects with the help of an evolving radial basis network. Cybernetics and Systems Analysis, 49 (2), 173–182. doi: https://doi.org/10.1007/s10559-013-9497-0
- Rudenko, O., Bezsonov, O. (2011). Function Approximation Using Robust Radial Basis Function Networks. Journal of Intelligent Learning Systems and Applications, 03 (01), 17–25. doi: https://doi.org/10.4236/jilsa.2011.31003
- Chambers, J. A., Tanrikulu, O., Constantinides, A. G. (1994). Least mean mixed-norm adaptive filtering. Electronics Letters, 30 (19), 1574–1575. doi: https://doi.org/10.1049/el:19941060
- Rakesh, P., Kumar, T. K., Albu, F. (2019). Modified Least-Mean Mixed-Norm Algorithms For Adaptive Sparse System Identification Under Impulsive Noise Environment. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). doi: https://doi.org/10.1109/tsp.2019.8768813
- Papoulis, E. V., Stathaki, T. (2004). A Normalized Robust Mixed-Norm Adaptive Algorithm for System Identification. IEEE Signal Processing Letters, 11 (1), 56–59. doi: https://doi.org/10.1109/lsp.2003.819353
- Arenas-García, J., Figueiras-Vidal, A. R. (2005). Adaptive combination of normalised filters for robust system identification. Electronics Letters, 41 (15), 874. doi: https://doi.org/10.1049/el:20051936
- Rudenko, O., Bezsonov, O., Lebediev, O., Serdiuk, N. (2019). Robust identification of non-stationary objects with nongaussian interference. Eastern-European Journal of Enterprise Technologies, 5 (4 (101)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.181256
- Walach, E., Widrow, B. (1984). The least mean fourth (LMF) adaptive algorithm and its family. IEEE Transactions on Information Theory, 30 (2), 275–283. doi: https://doi.org/10.1109/tit.1984.1056886
- Bershad, N. J., Bermudez, J. C. M. (2011). Mean-square stability of the Normalized Least-Mean Fourth algorithm for white Gaussian inputs. Digital Signal Processing, 21 (6), 694–700. doi: https://doi.org/10.1016/j.dsp.2011.06.002
- Eweda, E., Zerguine, A. (2011). New insights into the normalization of the least mean fourth algorithm. Signal, Image and Video Processing, 7 (2), 255–262. doi: https://doi.org/10.1007/s11760-011-0231-y
- Eweda, E. (2012). Global Stabilization of the Least Mean Fourth Algorithm. IEEE Transactions on Signal Processing, 60 (3), 1473–1477. doi: https://doi.org/10.1109/tsp.2011.2177976
- Eweda, E., Bershad, N. J. (2012). Stochastic Analysis of a Stable Normalized Least Mean Fourth Algorithm for Adaptive Noise Canceling With a White Gaussian Reference. IEEE Transactions on Signal Processing, 60 (12), 6235–6244. doi: https://doi.org/10.1109/tsp.2012.2215607
- Hubscher, P. I., Bermudez, J. C. M., Nascimento, Ví. H. (2007). A Mean-Square Stability Analysis of the Least Mean Fourth Adaptive Algorithm. IEEE Transactions on Signal Processing, 55 (8), 4018–4028. doi: https://doi.org/10.1109/tsp.2007.894423
- Zhang, S., Zhang, J. (2015). Fast stable normalised least-mean fourth algorithm. Electronics Letters, 51 (16), 1276–1277. doi: https://doi.org/10.1049/el.2015.0421
- Guan, S., Meng, C., Biswal, B. (2019). Optimal step-size of least mean absolute fourth algorithm in low SNR. arXiv. Available at: https://arxiv.org/ftp/arxiv/papers/1908/1908.08165.pdf
- Asad, S. M., Moinuddin, M., Zerguine, A., Chambers, J. (2019). A robust and stable variable step-size design for the least-mean fourth algorithm using quotient form. Signal Processing, 162, 196–210. doi: https://doi.org/10.1016/j.sigpro.2019.04.021
- Bin Mansoor, U., Mayyala, Q., Moinuddin, M., Zerguine, A. (2017). Quasi-Newton least-mean fourth adaptive algorithm. 2017 25th European Signal Processing Conference (EUSIPCO). doi: https://doi.org/10.23919/eusipco.2017.8081689
- Sadiq, A., Usman, M., Khan, S., Naseem, I., Moinuddin, M., Al-Saggaf, U. M. (2019). q-LMF: Quantum Calculus-Based Least Mean Fourth Algorithm. Fourth International Congress on Information and Communication Technology, 303–311. doi: https://doi.org/10.1007/978-981-15-0637-6_25
- Zerguine, A., Cowan, C. F. N., Bettayeb, M. (1996). LMS-LMF adaptive scheme for echo cancellation. Electronics Letters, 32 (19), 1776. doi: https://doi.org/10.1049/el:19961202
- Zerguine, A., Aboulnasr, T. (2000). Convergence analysis of the variable weight mixed-norm LMS-LMF adaptive algorithm. Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154). doi: https://doi.org/10.1109/acssc.2000.910959
- Zerguine, A. (2012). A variable-parameter normalized mixed-norm (VPNMN) adaptive algorithm. EURASIP Journal on Advances in Signal Processing, 2012 (1). doi: https://doi.org/10.1186/1687-6180-2012-55
- Rudenko, O., Bezsonov, O., Serdiuk, N., Oliinyk, K., Romanyk, O. (2020). Workable identification of objects based on minimization of combined functional. Information Processing Systems, 1 (160), 80–88. doi: https://doi.org/10.30748/soi.2020.160.10
- Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs. IEEE Transactions on Information Theory, 4 (2), 69–72. doi: https://doi.org/10.1109/tit.1958.1057444
- Gladyshev, E. G. (1965). On Stochastic Approximation. Theory of Probability & Its Applications, 10 (2), 275–278. doi: https://doi.org/10.1137/1110031
- Spiegel, M. R., Lipschutz, S., Liu, J. (2008). Mathematical Handbook of Formulas and Tables. McGraw Hill.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Oleg Rudenko, Oleksandr Bezsonov, Oleh Lebediev, Valentyn Lebediev, Kiril Oliinyk
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.