Basic electrophysical parameters of GaxIn1-xAs solid solution microwhiskers
DOI:
https://doi.org/10.15587/1729-4061.2014.21046Keywords:
microwhiskers, GaxIn1-xAs, electrophysical parameters, band gap value, radiation resistanceAbstract
The paper deals with the studying basic electrophysical parameters of GaхIn1-хAs solid solution microwhiskers, grown by the method of chemical transport reactions using the vapor-liquidcrystal mechanism, and their stability under the influence of ionizing (neutron) radiation. Such studies are interesting in terms of the efficiency of the method of growing these materials, model calculations of their parameters and identifying possible application fields. The results of studying the electrophysical parameters (the Hall coefficient, resistivity, mobility) of the grown GaxIn1-xAs microwhiskers in the composition range of 0.3≤x≤0.8 are given. The band gap value of the microwhiskers was calculated by the changes behavior of the electrophysical parameters in the zone of intrinsic and mixed conduction. The analysis of the radiation resistance of the grown microwhiskers was carried out on the basis of the local electroneutrality level calculation for GaxIn1 xAs solid solution with different composition and changes in the concentration of the intrinsic material charge carriers, determined before and after the neutron radiation at fluences of Fn = 1・1015 sm-2 та Fn = 7・1015 sm-2. It was found that in GaxIn1-xAs solid solution the sublattices of binary compounds retain their properties and under the influence of ionizing radiation can compensate the material changes by forming radiation defects (dopants) of different types (acceptor and donor), which allow developing radiation-resistant devices on their basis. So, GaхIn1-хAs solid solutions with the component composition of x ≤ 0.6 are interesting in terms of using for sensors, operating in radiation conditions that was experimentally confirmed.
References
- Kawashima, Toshiyuki Thermal- and Spectral-Characteristics of High-Power Quasi-Continuous Wave 940-nm InGaAs Diode Laser Arrays [Text] / Toshiyuki Kawashima, Tomokazu Ichii, Takeshi Kanzaki, Masanobu Yamanaka, Yasukazu Izawa, Sadao Nakai, Hirofumi Kan // Optical Review. – 2000. – Vol. 7, Is. 6. – P 520-524.
- Liu, G. T. The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-ina Well (DWELL) Structures [Text] / G. T. Liu, A. Stintz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. J. Malloy, L. F. Lester // IEEE J. OF QUANTUM ELECTRONICS. – 2000. – Vol. 36, № 11. – P 1272-1279.
- Dowd, P. Long wavelength (1.3 and 1.5 μm) photoluminescence from InGaAs/GaPAsSb quantum wells grown on GaAs [Text] / P. Dowd, W. Braun, David J. Smith, C.M. Ryu, C.-Z. Guo, S. L. Chen, U. Koelle, S. R. Johnson, Y.-H. Zhang // Appl. Phys. Lett. – 1999. – Vol. 75, Is. 9. – P 1267-1269.
- Брудный, В. Локальная электронейтральность и закрепление химическогопотенциала в твердых растворах соединений III–V: границы раздела, радиационные эффекты [Текст] / В. Н. Брудный, С. Н. Гриняев // Физика и техника полупроводников. – 1998. – Т. 32, № 3. – С. 315-318.
- Дубровский, В. Полупроводниковые нитевидные нанокристаллы: синтез, свойства, применения. Обзор [Текст] / В. Г. Дубровский, Г. Э. Цырлин, В. М. Устинов // Физика и техника полупроводников. – 2009. –Т. 43, Вып. 12. – С. 1585-1628.
- Большакова, І. Властивості віскерів твердого розчину GaxIn1-xAs, вирощених методом хімічних транспортних реакцій з газової фази [Текст] / І. А. Большакова, Я. Я. Кость, О. Ю. Макідо, Р. М. Стецко, Ф. М. Шуригін // Вісник НУ „Львівська Політехніка”. Електроніка. – 2013. – № 764. – С. 112-118.
- Большакова, І. Дослідження температурної залежності параметрів легованих мікрокристалів антимоніду індію в інтервалі температур 77.525 К [Текст] / І. А. Большакова, Д. М. Заячук, Т. А. Московець, О. Ю. Макідо, Ф. М. Шуригін // Вісник НУ «Львівська політехніка». Електроніка. – 2003. – № 482. – С. 86-91.
- Bolshakova, I. Mathematical simulation, synthesis, characterization and application of indium arsenide whiskers [Text] / I. Bolshakova, Y. Kost, E. Makido, F. Shurygin // Journal of Crystal Growth. – 2008. – Vol. 310, Is. 7-9. – P. 2254-2259.
- Маделунг, О. Физика полупроводниковых соединений элементов III и V групп [Текст]: Перевод с английского / О. Маделунг. – М. : Мир 1967. – 480 с.
- Новые полупроводниковые материалы. Наноструктуры. Биологические системы. Характеристики и свойства [Електронний ресурс]. – NSM Archive. Physical properties of Gallium Indium Arsenide (GaInAs). База даних ФТИ им. Иоффе РАН. – Режим доступу http://www.matprop.ru/GaInAs.
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors [Text] / S. Adachi // John Wiley & Sons, 2009. – 400 p.
- Брудный, В. Модель самокомпенсации и стабилизации уровня Ферми в облученных полупроводниках [Текст] / В. Н. Брудный, Н. Г. Колин, Л. С. Смирнов // Физика и техника полупроводников. – 2007. – Т. 41, № 9. – С. 1031-1040.
- Большакова, И. Влияние нейтронного облучения на свойства нитевидных микрокристаллов n-InSb [Текст] / И. А. Большакова, В. М. Бойко, В. Н. Брудный, И. В. Каменская, Н. Г. Колин, Е. Ю. Макидо, Т. А. Московец, Д. И. Меркурисов // Физика и техника полупроводников. – 2005. – Т. 39, № 7. – С. 814-819.
- Kolin, N. Neutron-Transmutation Doping and Radiation Modification of Semiconductors: Current Status and Outlook [Text] / N. Kolin // Russian Physics Journal. – 2003. – Vol. 45, № 6. – P. 543-551.
- Брудный, В.Н. Электрофизические и оптические свойства InP, облученного большими интегральными потоками нейтронов [Текст] / В. Н. Брудный, Н. Г. Колин, Д. И. Меркурисов, В. А. Новиков // Физика и техника полупроводников. – 2005. – Т. 39, № 5. - С. 528-534.
- Kawashima, Toshiyuki, Ichii, Tomokazu, Kanzaki, Takeshi, Yamanaka, Masanobu, Izawa, Yasukazu, Nakai, Sadao, Kan, Hirofumi (2000). Thermal- and Spectral-Characteristics of High-Power Quasi-Continuous Wave 940-nm InGaAs Diode Laser Arrays. Optical Review, Vol. 7, Is. 6, 520-524.
- Liu, G. T., Stintz, A., Li, H., Newell, T. C., Gray, A. L., Varangis, P. M., Malloy, K. J., Lester, L. F. (2000). The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures. IEEE J. OF QUANTUM ELECTRONICS, Vol. 36, № 11, 1272-1279.
- Dowd, P., Braun, W., Smith, David J., Ryu, C. M., Guoet, C.-Z. (1999). Long wavelength (1.3 and 1.5 μm) photoluminescence from InGaAs/GaPAsSb quantum wells grown on GaAs. Appl. Phys. Lett.75, Is. 9; 1267-1269.
- Brudnyi, V. N., Hryniaev, S. N. (1998). Lokalnaia elektroneitralnost i zakreplenye khymycheskoho potentsyala v tverdikh rastvorakh soedynenyi III–V: hranytsi razdela, radyatsyonnie effekti. Fizika I tekhnika poluprovodnikov. Vol. 32, № 3, 315-318.
- Dubrovskiy, V. G., Tsyirlin, G. E., Ustinov, V. M. (2009). Poluprovodnikovyie nitevidnyie nanokristallyi: sintez, svoystva, primeneniya. Obzor. Fizika i tehnika poluprovodnikov, Vol. 43, Is. 12, 1585-1628.
- Bolshakova, I. A., Kost, Ya. Ya., Makido, O. Yu., Stetsko, R. M., Shuryhin, F. M. (2013). Vlastyvosti viskeriv tverdoho rozchynu GaxIn1-xAs, vyroshchenykh metodom khimichnykh transportnykh reaktsii z hazovoi fazy. Visnyk NU „Lvivska Politekhnika”. Elektronika, 764, 112-118.
- Bolshakova, I. A., Zaiachuk, D. M., Moskovets, T. A., Makido, O. Yu., Koptsev, P. S., Shuryhin, F. M. (2003). Doslidzhennia temperaturnoi zalezhnosti parametriv lehovanykh mikrokrystaliv antymonidu indiiu v intervali temperatur 77.525 K. Visnyk NU ≪Lvivska politekhnika≫. Elektronika, 482, 86-91.
- Bolshakova, I. A., Kost, Ya. Ya., Makido, O. Yu., Shuryhin, F. M. (2008). Mathematical simulation, synthesis, characterization and application of indium arsenide whiskers. Journal of Crystal Growth, Vol. 310, Is. 7-9, 2254-2259.
- Madelung, O. (1967). Fizika poluprovodnikovyih soedineniy elementov III i V grupp. Perevod s angliyskogo. Moskva, Mir, 480.
- Novyie poluprovodnikovyie materialyi. Nanostrukturyi. Biologicheskie sistemyi. Harakteristiki i svoystva. NSM Archive - Physical properties of Gallium Indium Arsenide (GaInAs). Baza danih FTI im. Ioffe RAN. http://www.matprop.ru/GaInAs.
- Adachi, S. (2009). Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. John Wiley & Sons, 400. 12. Brudnyiy, V. N., Kolin, N. G., Smirnov, L. S. (2007). Model samokompensatsii i stabilizatsii urovnya Fermi v obluchennyih poluprovodnikah. Fizika i tehnika poluprovodnikov, Vol. 41, № 9, 1031-1040.
- Bolshakova, I. A., Boyko, V. M., Brudnyiy, V. N., Kamenskaya, I. V., Kolin, N. G., Makido, E. Yu., Moskovets, T. A., Merkurisov, D. I. (2005). Vliyanie neytronnogo oblucheniya na svoystva nitevidnyih mikrokristallov n-InSb. Fizika i tehnika poluprovodnikov, Vol. 39, Is. 7, 814-819.
- Kolin, N. (2003). Neutron-Transmutation Doping and Radiation Modification of Semiconductors: Current Status and Outlook. Russian Physics Journal, Vol. 45, № 6, 543-551.
- Brudnyiy, V. N., Kolin, N. G., Merkurisov, D. I., Novikov, V. A. (2005). Elektrofizicheskie i opticheskie svoystva InP, obluchennogo bolshimi integralnyimi potokami neytronov. Fizika i tehnika poluprovodnikov, Vol. 39, № 5, 528-534.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Інеса Антонівна Большакова, Ярослав Ярославович Кость, Олена Юріївна Макідо, Роман Михайлович Стецко, Федір Михайлович Шуригін
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.