Comparing the radioactive contamination of marsh Labrador tea (Ledum palustre L.) Over different periods since Chernobyl accident

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.211933

Keywords:

specific activity of 137Cs, radioactive contamination, migration of radionuclides, phytomass, forest ecosystems

Abstract

Radioactive contamination of the above-ground phytomass of marsh Labrador tea (Ledum palustre L.) in different periods after the Chernobyl accident was studied. Marsh Labrador tea is widely used in official and folk medicine. The studied species grows in over-moistened pine (less mixed) forests and open oligotrophic and mesotrophic marshes. It was found that in the first four years since the beginning of observations (1991), the magnitude of the specific activity of 137Cs in above-ground vegetative phytomass of marsh Labrador tea, depending on a permanent sample area (PSA), decreased by 1.2–1.4 times. After 10 years, it decreased by 1.6–1.7 times, after 16 years by 1.9–2.1 times, after 21 years by 2.7–3.1 times, and after 27 years by 3.1–6.5 times. An increase in the magnitude of transitions factors was also observed on all PSA over time. Thus, the minimal increase within 1991–2018 was recorded in PSA 11 – by 1.2 times and on PSA 13 – by 1.4 times. The maximum decrease in the magnitude of transition coefficient was observed in PSA 16 – by 2.7 times, in PSA 15 – by 3.0 times, and in PSA 18 – by 2.0 times. It was found that marsh Labrador tea belongs to the group of plants that are characterized by the high content of 137Cs in the above-ground vegetative phytomass. Within the observation period (1991–2018), this content significantly exceeds the admissible levels of radionuclide content in plant medicinal raw materials that are used for manufacturing medical preparations. In the PSA with maximum magnitudes of soil contamination density (400.5±50.73 kBk·m-2) this excess made up 158.4 times in 1991, and 33.7 times (166.9±23.56 kBk·m-2) in 2018. For 27 years of observations, there has been a decrease in the density of radioactive soil contamination by 2.1–2.7 times, which is due to radionuclide decomposition, its vertical migration in the soil, and towards the components of forest ecosystems

Author Biographies

Volodymyr Krasnov, Zhytomyr Polytechnic State University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

Doctor of Agricultural Sciences, Professor

Department of Ecology

Oleksandr Orlov, Poliskiy Branch of Ukrainian Research Institute of Forestry and Agro-Forest Melioration named after G. M. Vysotsky Neskorenykh str., 2, Dovzhyk vil., Zhytomyr reg., Ukraine, 10004

PhD, Senior Researcher

Laboratory of Radiation Ecology of the Forest

Oleh Zhukovskyi, Poliskiy Branch of Ukrainian Research Institute of Forestry and Agro-Forest Melioration named after G. M. Vysotsky Neskorenykh str., 2, Dovzhyk vil., Zhytomyr reg., Ukraine, 10004

Researcher

Laboratory of Radiation Ecology of the Forest

Mariia Korbut, Zhytomyr Polytechnic State University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

PhD, Associate Professor

Department of Ecology

Iryna Davydova, Zhytomyr Polytechnic State University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

PhD, Associate Professor

Department of Ecology

Viktoriia Melnyk, Zhytomyr Polytechnic State University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

Assistant

Department of Ecology

Olha Zborovska, Poliskiy Branch of Ukrainian Research Institute of Forestry and Agro-Forest Melioration named after G. M. Vysotsky Neskorenykh str., 2, Dovzhyk, Zhytomyr region, Ukraine, 10004

PhD, Senior Researcher

Department of Radiation Ecology of the Forest

References

  1. Krasnov, V. P., Orlov, O. O., Vedmid, M. M. (2009). Atlas roslyn-indykatoriv i typiv lisoroslynnykh umov Ukrainskoho Polissia. Novohrad-Volynskyi: NOVOhrad, 488.
  2. Krasnov, V. P., Orlov, O. O., Hetmanchuk, A. I. (2005). Radioekolohiya likarskykh roslyn. Zhytomyr: Polissia, 214.
  3. Dobrochaeva, D. N., Kotov, M. I., Prokudin, Yu. N. et. al. (1999). Opredelitel' vysshih rasteniy Ukrainy. Kyiv: Fitosotsiotsentr, 548.
  4. Minarchenko, V. M. (2014). Resursoznavstvo. Likarski roslyny. Kyiv: Fitosotsiotsentr, 215.
  5. Konishchuk, V. V. (2015). Klasyfikatsiya torfovykh bolit u rozvytku i typolohiyi helolandshaftiv. Agroecological journal, 4, 22–31. Available at: http://nbuv.gov.ua/UJRN/agrog_2015_4_5
  6. Cheshire, M. V., Shand, C. (1991). Translocation and plant availability of radio caesium in an organic soil. Plant and Soil, 134 (2), 287–296. doi: https://doi.org/10.1007/bf00012048
  7. Bunzl, K., Schimmack, W., Krouglov, S. V., Alexakhin, R. M. (1995). Changes with time in the migration of radiocesium in the soil, as observed near Chernobyl and in Germany, 1986–1994. Science of The Total Environment, 175 (1), 49–56. doi: https://doi.org/10.1016/0048-9697(95)04842-1
  8. Orlov, A. A., Kurchenko, I. N., Sokolova, E. V., Zhdanova, N. N., Yur'eva, E. M. (2009). Printsipial'no novoe troficheskoe vzaimodeystvie v sisteme «mhi – endofitnye mikromitsety – sosudistye rasteniya» v oligotrofnyh lesobolotnyh ekosistemah. Sb. mat. VII Mezhdunar. konf. «Problemy lesnoy fitopatologii i mikologii». Perm', 142–145.
  9. Peterson, R. L., Massicotte, H. B., Melville, L. H. (2004). Mycorrhizas: Anatomy and Cell Biology. Ottawa, 173.
  10. Joner, E. J., Johansen, A. (2000). Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycological Research, 104 (1), 81–86. doi: https://doi.org/10.1017/s0953756299001240
  11. Tkachuk, V. I. (2004). Problemy vyroshchuvannia sosny zvychainoi na Pravoberezhnomu Polissi. Zhytomyr: Volyn, 464.
  12. Ivaniuk, I. D. (2017). Typolohichna struktura dubovykh nasadzhen Zakhidno- ta Tsentralnopoliskoho lisohospodarskoho okruhu. Zhytomyr: ZhDU im. I. Franka, 31–32.
  13. Krasnov, V. P., Tkachuk, V. I., Orlov, O. O. (2013). Dovidnyk spetsialista lisovoho hospodarstva. Zhytomyr: Novohrad-Volynskyi, 436.
  14. Dmitriev, S. V., Fetisov, A. A., Pertsev, V. A., Kotov, N. N., Grinkevich, N. I., Bakulina, L. A. (1991). O zagryaznenii dikorastushchih lekarstvennyh rasteniy tseziem-137. Gigiena i sanitariya, 12, 51–53.
  15. Grishchenko, E. N., Grodzinskiy, D. N., Moskalenko, V. N. et. al. (1990). Radionuklidnaya zagryaznennost' rastitel'nogo syr'ya v razlichnyh oblastyah Ukrainy posle avarii na ChAES. Ekologicheskie aspekty v farmatsii: Tez. Dokl. Mezhdunar. simp. Moscow, 56.
  16. Grodzinskiy, D. N., Kolomiets, K. D., Kutlahmedov, Yu. A. et. al. (1991). Antropogennaya radionuklidnaya anomaliya i rasteniya. Kyiv: Lybid', 160.
  17. Orlov, O. O., Dolin, V. V. (2010). Bioheokhimiya tseziyu-137 u lisobolotnykh ekosystemakh Ukrainskoho Polissia. Kyiv: Nauk. dumka, 198.
  18. Ipat'ev, V. A., Bulko, N. I., Mitin, N. V., Shabaleva, M. A. (2004). Gidromeliorativnyy metod snizheniya kontsentratsii dozoobrazuyushchih radionuklidov v lesnyh ekosistemah. Problemy radioekologii lesa. Les. Chelovek. Chernobyl', 61, 67–68.
  19. Оrlov, О. О., Golovko, О. V. (2011). Accumulation of 137Cs by Species of Grass-Dwarf-Shrub Layer of Forest Bogs of Western Polyssya of Ukraine. Lisivnytstvo i ahrolisomelioratsiya, 118, 73–80. Available at: http://forestry-forestmelioration.org.ua/index.php/journal/issue/view/15/118-pdf
  20. Holovko, O., Orlov, A. (2019). Specifics of accumulation of 137CS in phytomass of species of grass-dwarf-shrub layer of oligotrophic and mesotrophic bogs of Western Polissya of Ukraine. Biological Systems: Theory and Innovation, 10 (3), 92–101. doi: https://doi.org/10.31548/biologiya2019.03.092
  21. Rosén, K., Vinichuk, M., Johanson, K. J. (2009). 137Cs in a raised bog in central Sweden. Journal of Environmental Radioactivity, 100 (7), 534–539. doi: https://doi.org/10.1016/j.jenvrad.2009.03.005
  22. Livens, F. R., Howe, M. T., Hemingway, J. D., Goulding, K. W. T., Howard, B. J. (1996). Forms and rates of release of 137Cs in two peat soils. European Journal of Soil Science, 47 (1), 105–112. doi: https://doi.org/10.1111/j.1365-2389.1996.tb01377.x
  23. Shcheglov, A. I., Tsvetnova, O. B., Kasatskiy, A. A. (2011). Some indicators of biological cycle of 137Cs and 39K in forest ecosystems of Bryansk woodland in the remote period after Chernobyl fallouts. Vestnik Moskovskogo universiteta. Seriya 17. Pochvovedenie, 3, 43–48.
  24. Ipat'ev, V. A. (Ed.) (1999). Les. Chelovek. Chernobyl'. Lesnye ekosistemy posle avarii na Chernobyl'skoy AES: sostoyanie, prognoz, reaktsіya naseleniya, puti reabilitatsii. Gomel': IL NAN Belarusi, 454.
  25. Ipat'ev, V. A., Bulko, N. I., Mitin, N. V., Shabaleva, M. A., Didenko, L. G. (2004). Radioekologicheskiy fenomen lesnyh ekosistem. Gomel': IL NAN Belarusi, 310.
  26. Eliashevich, N. V., Matsko, V. P., Skvernyuk, I. I., Orehova, M. G. (1998). Verhovye bolota – fitomigratsionnye radionuklidnye anomalii. Fundamental'nye i prikladne aspekty radiobiologii: biologicheskie effekty malyh doz i radioaktivnoe zagryaznenie sredy: Tez. dokl. mezhdunar. nauchn. konf. Minsk, 73.
  27. Ipatyev, V., Bulavik, I., Baginsky, V., Goncharenko, G., Dvornik, A. (1999). Forest and Chernobyl: forest ecosystems after the Chernobyl nuclear power plant accident: 1986–1994. Journal of Environmental Radioactivity, 42 (1), 9–38. doi: https://doi.org/10.1016/s0265-931x(98)00042-3
  28. Kurchenko, I. N., Sokolova, E. V., Orlov, A. A. (2013). Endofitnye mikroskopicheskie griby vysshih rasteniy i ih ekologicheskaya rol' v biogeotsenozah sfagnovyh bolot Ukrainskogo Poles'ya. Mikobiota Ukrainskogo Poles'ya. Posledstviya Chernobyl'skoy katastrofy. Kyiv: Naukova dumka, 101–197.
  29. Kurchenko, I. N., Sokolova, E. V., Orlov, A. A. (2013). Endofitnye mikroskopicheskie griby vysshih rasteniy i ih ekologicheskaya rol v biogeotsenozah sfagnovyh bolot Ukrainskogo Polesya. Mikobiota Ukrainskogo Polesya. Posledstviya Chernobylskoy katastrofy. Kyiv: Naukova dumka, 101–197.

Downloads

Published

2020-10-31

How to Cite

Krasnov, V., Orlov, O., Zhukovskyi, O., Korbut, M., Davydova, I., Melnyk, V., & Zborovska, O. (2020). Comparing the radioactive contamination of marsh Labrador tea (Ledum palustre L.) Over different periods since Chernobyl accident. Eastern-European Journal of Enterprise Technologies, 5(10 (107), 35–43. https://doi.org/10.15587/1729-4061.2020.211933