Improving the thermal method for assessing the technical condition of rolling bearings based on the heating rate criterion

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.212540

Keywords:

non-destructive testing, rolling bearing, technical condition, heating rate, thermal method

Abstract

An improved method of passive thermal control has been proposed in order to operatively assess the technical condition of rolling bearings, based on studying the heating rate of a bearing. The values of the heating rate of ball, roller, and conical rolling bearings, as well as ball separators, have been determined empirically. It has been shown that the discrete limit heating rate values derived under the regular heating mode of mechanical reducers during stand tests are suitable for use as a diagnostic criterion for rolling bearings. Based on the heating speed criterion for mechanical reducers, it is possible to perform an operative assessment of the technical condition of rolling bearings of different types during the operation of equipment for different purposes. It has been established that for a rolling bearing in a working technical condition the heating rate under a regular heating mode does not exceed 1 °C/min. The resulting value corresponds to the diagnostic criterion for the heating rate of mechanical reducers in a working technical condition of ϑн≤1.1 °C/min. Using a diagnostic parameter of the heating rate under a regular heating mode makes it possible to resolve the issue related to the duration of control over the technical condition of a rolling bearing using a thermal method. Reducing the control procedure duration, when using the improved thermal non-destructive testing, by 4 times, would yield a reduction in operating costs due to the possibility of ongoing control over rolling bearings at the beginning of the equipment operation. It has also been confirmed that the heating rate of rolling bearings under a regular heating mode directly depends on their technical condition and does not depend on the load transferred and the mode of operation of the bearing nodes of the technological equipment. The proposed method could be applied in the maintenance system based on the actual condition of the equipment for the operative control over rolling bearings

Author Biographies

Nataliia Peretiaka, Odessa State Academy of Technical Regulation and Quality Kuznechna str., 15, Odessa, Ukraine, 65020

PhD

Department of Metrology and Metrological Support

Konstantin Boryak, Odessa State Academy of Technical Regulation and Quality Kuznechna str., 15, Odessa, Ukraine, 65020

Doctor of Technical Sciences, Associate Professor

Department of Metrology and Metrological Support

Oleksandr Vatrenko, Odessa National Academy of Food Technologies Kanatna str., 112, Оdessa, Ukraine, 65039

Doctor of Technical Sciences, Associate Professor

Department of Processes, Equipment and Energy Management

References

  1. Artem'ev, B. V., Efimov, A. G., Klyuev, S. V., Matveev, V. I., Pushkina, I. Yu., Turobov, B. V. et. al. (2012). Osnovnye tendentsii razvitiya i sostoyanie NK i TD v mire. Territoriya NDT, 3, 24–33. Available at: http://tndt.idspektr.ru/images/stories/archive/03_2012/03_2012.pdf
  2. Trimm, M. (2003). An overview of nondestructive evaluation methods. Practical Failure Analysis, 3 (3), 17–31. doi: https://doi.org/10.1007/bf02715528
  3. Kondic, V., Bojanic, B., Kondic, Z. (2015). The choice of the optimum alternative of the process results quality control. Technical Journal, 9 (2), 153–158. Available at: https://hrcak.srce.hr/140755
  4. Saufi, S. R., Ahmad, Z. A. B., Leong, M. S., Lim, M. H. (2019). Challenges and Opportunities of Deep Learning Models for Machinery Fault Detection and Diagnosis: A Review. IEEE Access, 7, 122644–122662. doi: https://doi.org/10.1109/access.2019.2938227
  5. Lee, G.-Y., Kim, M., Quan, Y.-J., Kim, M.-S., Kim, T. J. Y., Yoon, H.-S. et. al. (2018). Machine health management in smart factory: A review. Journal of Mechanical Science and Technology, 32 (3), 987–1009. doi: https://doi.org/10.1007/s12206-018-0201-1
  6. Chen, X., Wang, S., Qiao, B., Chen, Q. (2017). Basic research on machinery fault diagnostics: Past, present, and future trends. Frontiers of Mechanical Engineering, 13 (2), 264–291. doi: https://doi.org/10.1007/s11465-018-0472-3
  7. Hoppenstedt, B., Pryss, R., Stelzer, B., Meyer-Brötz, F., Kammerer, K., Treß, A., Reichert, M. (2018). Techniques and Emerging Trends for State of the Art Equipment Maintenance Systems – A Bibliometric Analysis. Applied Sciences, 8 (6), 916. doi: https://doi.org/10.3390/app8060916
  8. Vavilov, V. P., Torgunakov, V. G., Shiryaev, V. V., Ivanov, A. I., Nesteruk, D. A. (2003). Teplovoy nerazrushayushchiy kontrol' v tomskom NII introskopii. Izvestiya Tomskogo politehnicheskogo universiteta, 306 (1), 110–118. Available at: https://cyberleninka.ru/article/n/teplovoy-nerazrushayuschiy-kontrol-v-tomskom-nii-introskopii
  9. Moussa, W. (2017). A Passive Thermography Approach to Bearing Condition Monitoring. Juniper Online Journal Material Science, 1 (4). doi: https://doi.org/10.19080/jojms.2017.01.555567
  10. Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., Jayakumar, T. (2013). Infrared thermography for condition monitoring – A review. Infrared Physics & Technology, 60, 35–55. doi: https://doi.org/10.1016/j.infrared.2013.03.006
  11. Singh, R., Pandey, R., Chaudhary, R., Ranganath, M. S., Saxena, H. (2014). Analysis of Ball Bearings under Dynamic Loading Using Non Destructive Technique of Thermography. International Journal of Advance Research and Innovation, 2 (4), 781–783. Available at: https://www.academia.edu/11316453/Analysis_of_Ball_Bearings_under_Dynamic_Loading_Using_Non-_Destructive_Technique_of_Thermography
  12. Takabi, J., Khonsari, M. M. (2013). Experimental testing and thermal analysis of ball bearings. Tribology International, 60, 93–103. doi: https://doi.org/10.1016/j.triboint.2012.10.009
  13. Mitrovic, R. M., Miskovic, Z. Z., Djukic, M. B., Bakic, G. M. (2016). Statistical correlation between vibration characteristics, surface temperatures and service life of rolling bearings – artificially contaminated by open pit coal mine debris particles. Procedia Structural Integrity, 2, 2338–2346. doi: https://doi.org/10.1016/j.prostr.2016.06.293
  14. Ranjit, S., Kim, W. T. (2014). Quantitative evaluation for early defect detection of contaminated ball bearing by temperature mapping in infrared thermography. International Journal of Applied Engineering Research, 9 (21), 9401–9409. Available at: https://www.researchgate.net/publication/276207758_Quantitative_Evaluation_for_Early_Defect_Detection_of_Contaminated_Ball_Bearing_by_Temperature_Mapping_in_Infrared_Thermography
  15. Li, X., Lv, Y., Yan, K., Liu, J., Hong, J. (2017). Study on the influence of thermal characteristics of rolling bearings and spindle resulted in condition of improper assembly. Applied Thermal Engineering, 114, 221–233. doi: https://doi.org/10.1016/j.applthermaleng.2016.11.194
  16. Varenberg, M., Kligerman, Y., Halperin, G., Nakad, S., Kasem, H. (2018). Assessing workability of greased bearings after long-term storage. Friction, 7 (5), 489–496. doi: https://doi.org/10.1007/s40544-018-0255-1
  17. Liao, N.-T., Lin, J. F. (2006). Rolling-Sliding Analysis in Ball Bearing Considering Thermal Effect. Tribology Transactions, 49 (1), 1–16. doi: https://doi.org/10.1080/05698190500414300
  18. Peretyaka, N. A. (2017). Analysis of experimental test the reducers from the middle part of the axle passenger coaches. Zbirnyk naukovykh prats Viyskovoho instytutu Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka, 55, 81–92. Available at: https://mil.univ.kiev.ua/files/228_103780425.pdf
  19. Borodin, A. I., Ivanova, E. A. (2008). Non-stationary heat exchange of solids of any form. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 2, 147–153. Available at: https://cyberleninka.ru/article/n/nestatsionarnyy-teploobmen-tel-proizvolnoy-formy/viewer
  20. Sazhin, V. B., Sazhin, B. S. (2017). The use of regular thermal regime for thermophysical analysis of the materials to be dried. Mizhnarodnyi naukovyi zhurnal "Internauka", 2 (1), 154–159. Available at: http://nbuv.gov.ua/UJRN/mnj_2017_2(1)__41
  21. Boriak, K. F., Peretyaka, N. A. (2015). Temperature control at tests of reducers of a reducer-pitch drive of current generators located under the body of a passenger car. Collection of scientific works of the Odesa State Academy of Technical Regulation and Quality, 1 (6), 53–58. doi: https://doi.org/10.32684/2412-5288-2015-1-6-53-58
  22. Peretiaka, N. О. (2017). Improvement Trials on Stand Trials of Reducers of Passenger Carriages. Visnyk Vinnytskoho politekhnichnoho instytutu, 2, 83–90. Available at: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2036/2026
  23. Boryak, K., Peretyaka, N. (2017). Analysis of experimental testing of generator drive gearbox at the Kakhovka depot of Odessa railway. The scientific heritage, 10 (10), 40–44. Available at: http://tsh-journal.com/wp-content/uploads/2017/04/VOL-3-No-10-10-2017.pdf
  24. Boriak, K. F., Peretiaka, N. O. (2018). Pat. No. 129692 UA. Sposib teplovoi diahnostyky mekhanichnykh reduktoriv. No. u201804497; declareted: 24.04.2018; published: 12.11.2018, Bul. No. 21. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=252615
  25. Peretiaka, N. (2019). Analysis of Thermal Control Data Spindle Supports Desktop Screw-Cutting Lathe. Visnyk of Vinnytsia Politechnical Institute, 2, 91–98. doi: https://doi.org/10.31649/1997-9266-2019-143-2-91-98

Downloads

Published

2020-10-31

How to Cite

Peretiaka, N., Boryak, K., & Vatrenko, O. (2020). Improving the thermal method for assessing the technical condition of rolling bearings based on the heating rate criterion. Eastern-European Journal of Enterprise Technologies, 5(1 (107), 118–126. https://doi.org/10.15587/1729-4061.2020.212540

Issue

Section

Engineering technological systems