Improving the thermal method for assessing the technical condition of rolling bearings based on the heating rate criterion
DOI:
https://doi.org/10.15587/1729-4061.2020.212540Keywords:
non-destructive testing, rolling bearing, technical condition, heating rate, thermal methodAbstract
An improved method of passive thermal control has been proposed in order to operatively assess the technical condition of rolling bearings, based on studying the heating rate of a bearing. The values of the heating rate of ball, roller, and conical rolling bearings, as well as ball separators, have been determined empirically. It has been shown that the discrete limit heating rate values derived under the regular heating mode of mechanical reducers during stand tests are suitable for use as a diagnostic criterion for rolling bearings. Based on the heating speed criterion for mechanical reducers, it is possible to perform an operative assessment of the technical condition of rolling bearings of different types during the operation of equipment for different purposes. It has been established that for a rolling bearing in a working technical condition the heating rate under a regular heating mode does not exceed 1 °C/min. The resulting value corresponds to the diagnostic criterion for the heating rate of mechanical reducers in a working technical condition of ϑн≤1.1 °C/min. Using a diagnostic parameter of the heating rate under a regular heating mode makes it possible to resolve the issue related to the duration of control over the technical condition of a rolling bearing using a thermal method. Reducing the control procedure duration, when using the improved thermal non-destructive testing, by 4 times, would yield a reduction in operating costs due to the possibility of ongoing control over rolling bearings at the beginning of the equipment operation. It has also been confirmed that the heating rate of rolling bearings under a regular heating mode directly depends on their technical condition and does not depend on the load transferred and the mode of operation of the bearing nodes of the technological equipment. The proposed method could be applied in the maintenance system based on the actual condition of the equipment for the operative control over rolling bearingsReferences
- Artem'ev, B. V., Efimov, A. G., Klyuev, S. V., Matveev, V. I., Pushkina, I. Yu., Turobov, B. V. et. al. (2012). Osnovnye tendentsii razvitiya i sostoyanie NK i TD v mire. Territoriya NDT, 3, 24–33. Available at: http://tndt.idspektr.ru/images/stories/archive/03_2012/03_2012.pdf
- Trimm, M. (2003). An overview of nondestructive evaluation methods. Practical Failure Analysis, 3 (3), 17–31. doi: https://doi.org/10.1007/bf02715528
- Kondic, V., Bojanic, B., Kondic, Z. (2015). The choice of the optimum alternative of the process results quality control. Technical Journal, 9 (2), 153–158. Available at: https://hrcak.srce.hr/140755
- Saufi, S. R., Ahmad, Z. A. B., Leong, M. S., Lim, M. H. (2019). Challenges and Opportunities of Deep Learning Models for Machinery Fault Detection and Diagnosis: A Review. IEEE Access, 7, 122644–122662. doi: https://doi.org/10.1109/access.2019.2938227
- Lee, G.-Y., Kim, M., Quan, Y.-J., Kim, M.-S., Kim, T. J. Y., Yoon, H.-S. et. al. (2018). Machine health management in smart factory: A review. Journal of Mechanical Science and Technology, 32 (3), 987–1009. doi: https://doi.org/10.1007/s12206-018-0201-1
- Chen, X., Wang, S., Qiao, B., Chen, Q. (2017). Basic research on machinery fault diagnostics: Past, present, and future trends. Frontiers of Mechanical Engineering, 13 (2), 264–291. doi: https://doi.org/10.1007/s11465-018-0472-3
- Hoppenstedt, B., Pryss, R., Stelzer, B., Meyer-Brötz, F., Kammerer, K., Treß, A., Reichert, M. (2018). Techniques and Emerging Trends for State of the Art Equipment Maintenance Systems – A Bibliometric Analysis. Applied Sciences, 8 (6), 916. doi: https://doi.org/10.3390/app8060916
- Vavilov, V. P., Torgunakov, V. G., Shiryaev, V. V., Ivanov, A. I., Nesteruk, D. A. (2003). Teplovoy nerazrushayushchiy kontrol' v tomskom NII introskopii. Izvestiya Tomskogo politehnicheskogo universiteta, 306 (1), 110–118. Available at: https://cyberleninka.ru/article/n/teplovoy-nerazrushayuschiy-kontrol-v-tomskom-nii-introskopii
- Moussa, W. (2017). A Passive Thermography Approach to Bearing Condition Monitoring. Juniper Online Journal Material Science, 1 (4). doi: https://doi.org/10.19080/jojms.2017.01.555567
- Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., Jayakumar, T. (2013). Infrared thermography for condition monitoring – A review. Infrared Physics & Technology, 60, 35–55. doi: https://doi.org/10.1016/j.infrared.2013.03.006
- Singh, R., Pandey, R., Chaudhary, R., Ranganath, M. S., Saxena, H. (2014). Analysis of Ball Bearings under Dynamic Loading Using Non Destructive Technique of Thermography. International Journal of Advance Research and Innovation, 2 (4), 781–783. Available at: https://www.academia.edu/11316453/Analysis_of_Ball_Bearings_under_Dynamic_Loading_Using_Non-_Destructive_Technique_of_Thermography
- Takabi, J., Khonsari, M. M. (2013). Experimental testing and thermal analysis of ball bearings. Tribology International, 60, 93–103. doi: https://doi.org/10.1016/j.triboint.2012.10.009
- Mitrovic, R. M., Miskovic, Z. Z., Djukic, M. B., Bakic, G. M. (2016). Statistical correlation between vibration characteristics, surface temperatures and service life of rolling bearings – artificially contaminated by open pit coal mine debris particles. Procedia Structural Integrity, 2, 2338–2346. doi: https://doi.org/10.1016/j.prostr.2016.06.293
- Ranjit, S., Kim, W. T. (2014). Quantitative evaluation for early defect detection of contaminated ball bearing by temperature mapping in infrared thermography. International Journal of Applied Engineering Research, 9 (21), 9401–9409. Available at: https://www.researchgate.net/publication/276207758_Quantitative_Evaluation_for_Early_Defect_Detection_of_Contaminated_Ball_Bearing_by_Temperature_Mapping_in_Infrared_Thermography
- Li, X., Lv, Y., Yan, K., Liu, J., Hong, J. (2017). Study on the influence of thermal characteristics of rolling bearings and spindle resulted in condition of improper assembly. Applied Thermal Engineering, 114, 221–233. doi: https://doi.org/10.1016/j.applthermaleng.2016.11.194
- Varenberg, M., Kligerman, Y., Halperin, G., Nakad, S., Kasem, H. (2018). Assessing workability of greased bearings after long-term storage. Friction, 7 (5), 489–496. doi: https://doi.org/10.1007/s40544-018-0255-1
- Liao, N.-T., Lin, J. F. (2006). Rolling-Sliding Analysis in Ball Bearing Considering Thermal Effect. Tribology Transactions, 49 (1), 1–16. doi: https://doi.org/10.1080/05698190500414300
- Peretyaka, N. A. (2017). Analysis of experimental test the reducers from the middle part of the axle passenger coaches. Zbirnyk naukovykh prats Viyskovoho instytutu Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka, 55, 81–92. Available at: https://mil.univ.kiev.ua/files/228_103780425.pdf
- Borodin, A. I., Ivanova, E. A. (2008). Non-stationary heat exchange of solids of any form. Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 2, 147–153. Available at: https://cyberleninka.ru/article/n/nestatsionarnyy-teploobmen-tel-proizvolnoy-formy/viewer
- Sazhin, V. B., Sazhin, B. S. (2017). The use of regular thermal regime for thermophysical analysis of the materials to be dried. Mizhnarodnyi naukovyi zhurnal "Internauka", 2 (1), 154–159. Available at: http://nbuv.gov.ua/UJRN/mnj_2017_2(1)__41
- Boriak, K. F., Peretyaka, N. A. (2015). Temperature control at tests of reducers of a reducer-pitch drive of current generators located under the body of a passenger car. Collection of scientific works of the Odesa State Academy of Technical Regulation and Quality, 1 (6), 53–58. doi: https://doi.org/10.32684/2412-5288-2015-1-6-53-58
- Peretiaka, N. О. (2017). Improvement Trials on Stand Trials of Reducers of Passenger Carriages. Visnyk Vinnytskoho politekhnichnoho instytutu, 2, 83–90. Available at: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2036/2026
- Boryak, K., Peretyaka, N. (2017). Analysis of experimental testing of generator drive gearbox at the Kakhovka depot of Odessa railway. The scientific heritage, 10 (10), 40–44. Available at: http://tsh-journal.com/wp-content/uploads/2017/04/VOL-3-No-10-10-2017.pdf
- Boriak, K. F., Peretiaka, N. O. (2018). Pat. No. 129692 UA. Sposib teplovoi diahnostyky mekhanichnykh reduktoriv. No. u201804497; declareted: 24.04.2018; published: 12.11.2018, Bul. No. 21. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=252615
- Peretiaka, N. (2019). Analysis of Thermal Control Data Spindle Supports Desktop Screw-Cutting Lathe. Visnyk of Vinnytsia Politechnical Institute, 2, 91–98. doi: https://doi.org/10.31649/1997-9266-2019-143-2-91-98
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Nataliia Peretiaka, Konstantin Boryak, Oleksandr Vatrenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.