Invariant differential generalizations in problems of the elasticity theory as applied to polar coordinates

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.213476

Keywords:

generalized approaches, argument functions, polar coordinates, Cauchy-Riemann relations, Laplace equations

Abstract

The method of argument functions has become famous for solving problems of continuum mechanics. The solution of problems of the elasticity theory in polar coordinates was the further development of this method. The same approaches are applied to solving problems of the theory of plasticity, the theory of elasticity, and the theory of dynamic processes. If regularities of the solution are determined correctly, then they should be continued in other fields including the problems of the theory of elasticity in polar coordinates.

The proposed approach features finding not the solution itself but the conditions for its existence. These conditions may include differential or integral relations which make it possible to close the solution in a general form. This becomes possible when additional functions are introduced into consideration or the argument functions of coordinates of the deformation zone. Basic dependences that satisfy the boundary or edge conditions as well as the functions that simplify the solution of the problem in general should be the carriers of the proposed argument functions. For various reasons, two basic dependences were used in the solution: trigonometric and exponential. Their arguments are two unknown argument functions.

In the process of transformations, a mathematical connection was established between them in a form of the Cauchy-Riemann relations which had a stable tendency to be repeated in problems of the continuum mechanics. From these positions, the flat problem was solved in the most detailed way, tested, and compared with the studies of other authors.

By reducing the solution to a particular result, a way to classical solutions was found which confirms its reliability. The result obtained is useful and important since it becomes possible to solve an extensive class of axisymmetric applied problems using the method of argument functions of a complex variable

Author Biographies

Valeriy Chigirinsky, Rudny Industrial Institute 50 Let Oktyabrya str., 38, Rudny, Republic of Kazakhstan, 111500

Doctor of Technical Sciences, Professor

Department of Metallurgy and Mining

Olena Naumenko, Dnipro University of Technology Dmytra Yavornytskoho ave., 19, Dnipro, Ukraine, 49005

Senior Lecturer

Department of Structural, Theoretical and Applied Mechanics

References

  1. Chigurinski, V. (1999). The study of stressed and deformed metal state under condition of no uniform plastic medium flow. Metalurgija, 38 (1), 31–37.
  2. Chygyryns'kyy, V. V. (2004). Analysis of the state of stress of a medium under conditions of inhomogeneous plastic flow. Metalurgija, 43 (2), 87–93.
  3. Chigirinsky, V. V., Legotkin, G. I., Slepynin, A. G., Kozlov, V. I., Dragobetsky, V. V. (2015). Mechanisms of plastic deformation in case of production of thin-walled rolled stock of the special purpose. Metallurgical and Mining Industry, Dnipropetrovsk, 11, 222–230.
  4. Chigirinsky, V., Putnoki, A. (2017). Development of a dynamic model of transients in mechanical systems using argument-functions. Eastern-European Journal of Enterprise Technologies, 3 (7 (87)), 11–22. doi: https://doi.org/10.15587/1729-4061.2017.101282
  5. Chygyryns’kyy, V. V., Shevchenko, V. G., Mamuzic, I., Belikov, S. B. (2010). A new solution of the harmonic-functions in the theory of elasticity. Materials and technology, 44 (4), 219–222.
  6. Chigirinsky, V., Naumenko, O. (2019). Studying the stressed state of elastic medium using the argument functions of a complex variable. Eastern-European Journal of Enterprise Technologies, 5 (7 (101)), 27–35. doi: https://doi.org/10.15587/1729-4061.2019.177514
  7. Tihonov, A. N., Samarskiy, A. A. (1977). Uravneniya matematicheskoy fiziki. Moscow: Nauka, 735.
  8. Sedov, L. I. (2004). Mehanika sploshnoy sredy. Sankt-Peterburg: Lan', 560.
  9. Mushelishvili, N. I. (1966). Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti. Moscow: Nauka, 709.
  10. Lur'e, A. I. (1979). Teoriya uprugosti. Moscow: Nauka, 939.
  11. Timoshenko, S. P., Gud'er, Dzh. (1979). Teoriya uprugosti. Moscow: «Nauka», 560.
  12. Belmas, I. V., Kolosov, D. L., Onyshchenko, S. V. (2018). Stress-strain state of rubber-cable tractive element of tubular shape. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 60–69. doi: https://doi.org/10.29202/nvngu/2018-2/5
  13. Pozharskiy, D. A. (2017). Kontaktnaya zadacha dlya ortotropnogo poluprostranstva. Mehanika tverdogo tela, 3, 100–108.
  14. Georgievskiy, D. V., Tlyustangelov, G. S. (2017). Eksponentsial'nye otsenki vozmushcheniy zhestkoplasticheskogo rastekaniya-stoka kol'tsa. Izvestiya Rossiyskoy akademii nauk. Mehanika tverdogo tela, 4, 135–144.
  15. Vasil’ev, V. V., Lurie, S. A. (2017). New Solution of Axisymmetric Contact Problem of Elasticity. Mechanics of Solids, 52 (5), 479–487. doi: https://doi.org/10.3103/s0025654417050028
  16. Ike, C. C. (2019). Hankel transformation method for solving the Westergaard problem for point, line and distributed loads on elastic half-space. Latin American Journal of Solids and Structures, 16 (1). doi: https://doi.org/10.1590/1679-78255313
  17. Georgievskii, D. V. (2014). Compatibility equations in systems based on generalized Cauchy kinematic relations. Mechanics of Solids, 49 (1), 99–103. doi: https://doi.org/10.3103/s0025654414010117
  18. Sneddon, I. N., Berri, D. S.; Grigolyuka, E. I. (Ed.) (1961). Klassicheskaya teoriya uprugosti. Moscow: Gos. izd-vo fiz.-mat. lit-ry, 219.
  19. Maciolka, P., Jedrzejewski, J. (2017). Evaluation of different approaches to 3d numerical model development of the contact zone between elementary asperities and flat surface. Journal of Machine Engineering, 4 (17), 40–53. doi: https://doi.org/10.5604/01.3001.0010.7004
  20. Stampouloglou, I. H., Theotokoglou, E. E. (2009). Additional Separated-Variable Solutions of the Biharmonic Equation in Polar Coordinates. Journal of Applied Mechanics, 77 (2). doi: https://doi.org/10.1115/1.3197157
  21. Qian, H., Li, H., Song, G., Guo, W. (2013). A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate. Mathematical Problems in Engineering, 2013, 1–8. doi: https://doi.org/10.1155/2013/248671
  22. El-Naaman, S. A., Nielsen, K. L., Niordson, C. F. (2019). An investigation of back stress formulations under cyclic loading. Mechanics of Materials, 130, 76–87. doi: https://doi.org/10.1016/j.mechmat.2019.01.005
  23. Lopez-Crespo, P., Camas, D., Antunes, F. V., Yates, J. R. (2018). A study of the evolution of crack tip plasticity along a crack front. Theoretical and Applied Fracture Mechanics, 98, 59–66. doi: https://doi.org/10.1016/j.tafmec.2018.09.012
  24. Li, J., Zhang, Z., Li, C. (2017). Elastic-plastic stress-strain calculation at notch root under monotonic, uniaxial and multiaxial loadings. Theoretical and Applied Fracture Mechanics, 92, 33–46. doi: https://doi.org/10.1016/j.tafmec.2017.05.005
  25. Pathak, H. (2017). Three-dimensional quasi-static fatigue crack growth analysis in functionally graded materials (FGMs) using coupled FE-XEFG approach. Theoretical and Applied Fracture Mechanics, 92, 59–75. doi: https://doi.org/10.1016/j.tafmec.2017.05.010
  26. Correia, J. A. F. O., Huffman, P. J., De Jesus, A. M. P., Cicero, S., Fernández-Canteli, A., Berto, F., Glinka, G. (2017). Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details. Theoretical and Applied Fracture Mechanics, 92, 252–265. doi: https://doi.org/10.1016/j.tafmec.2017.09.004
  27. Sinekop, N. S., Lobanova, L. S., Parhomenko, L. A. (2015). Metod R-funktsiy v dinamicheskih zadachah teorii uprugosti. Kharkiv: KhGUPT, 95.
  28. Radeev, Yu. N. (2007). Prostranstvennaya zadacha matematicheskoy teorii plastichnosti. Samara: Iz-vo Samarskiy universitet, 464.
  29. Mehtiev, M. F. (2008). Asimptoticheskiy analiz nekotoryh prostranstvennyh zadach teorii uprugosti dlya polyh tel. Baku: NAN Azerbaydzhana, 320.
  30. Krupoderov, A. V., Shcherbakov, S. S. (2013). Reshenie nekotoryh dinamicheskih zadach teorii uprugosti metodom granichnyh elementov. Teoreticheskaya i prikladnaya mehanika, 28, 294–300.
  31. Hussein, N. S. (2014). Solution of a Problem Linear Plane Elasticity with Mixed Boundary Conditions by the Method of Boundary Integrals. Mathematical Problems in Engineering, 2014, 1–11. doi: https://doi.org/10.1155/2014/323178
  32. Malinin, N. N. (1975). Prikladnaya teoriya plastichnosti i polzuchesti. Moscow: Mashinostroenie, 400.
  33. Papargyri-Beskou, S., Tsinopoulos, S. (2014). Lamé’s strain potential method for plane gradient elasticity problems. Archive of Applied Mechanics, 85 (9-10), 1399–1419. doi: https://doi.org/10.1007/s00419-014-0964-5
  34. Zhemochkin, B. N. (1948). Teoriya uprugosti. Moscow: Stroyvoenmorizdat, 240.
  35. Nikiforov, S. N. (1955). Teoriya uprugosti i plastichnosti. Moscow: GILSI, 284.
  36. Bezuhov, N. I. (1968). Osnovy teorii uprugosti, plastichnosti i polzuchesti. Moscow: Vysshaya shkola, 512.

Downloads

Published

2020-10-31

How to Cite

Chigirinsky, V., & Naumenko, O. (2020). Invariant differential generalizations in problems of the elasticity theory as applied to polar coordinates. Eastern-European Journal of Enterprise Technologies, 5(7 (107), 56–73. https://doi.org/10.15587/1729-4061.2020.213476

Issue

Section

Applied mechanics