Development of modern models and methods of the theory of statistical hypothesis testing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.214718

Keywords:

statistical hypothesis testing, uniform method for solving problems, universal randomized criteria

Abstract

Typical problems of the theory of statistical hypothesis testing are considered. All these problems belong to the same object area and are formulated in a single system of axioms and assumptions using a common linguistic thesaurus. However, different approaches are used to solve each of these problems and a unique solution method is developed. In this regard, the work proposes a unified methodological approach for formulating and solving these problems. The mathematical basis of the approach is the theory of continuous linear programming (CLP), which generalizes the known mathematical apparatus of linear programming for the continuous case. The mathematical apparatus of CLP allows passing from a two-point description of the solution of the problem in the form {0; 1} to a continuous one on the segment [0; 1]. Theorems justifying the solution of problems in terms of CLP are proved. The problems of testing a simple hypothesis against several equivalent or unequal alternatives are considered. To solve all these problems, a continuous function is introduced that specifies a randomized decision rule leading to continuous linear programming models. As a result, it becomes possible to expand the range of analytically solved problems of the theory of statistical hypothesis testing. In particular, the problem of making a decision based on the maximum power criterion with a fixed type I error probability, with a constraint on the average risk, the problem of testing a simple hypothesis against several alternatives for given type II error probabilities. The method for solving problems of statistical hypothesis testing for the case when more than one observed controlled parameter is used to identify the state is proposed

Author Biographies

Lev Raskin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Distributed Information Systems and Cloud Technologies

Oksana Sira, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Distributed Information Systems and Cloud Technologies

References

  1. Kramer, G. (1975). Matematicheskie metody statistiki. Moscow: Mir, 648.
  2. Zaks, Sh. (1975). Teoriya statisticheskih vyvodov. Moscow: Mir, 776.
  3. Leman, E. (1979). Proverka statisticheskih gipotez. Moscow: Nauka, 408.
  4. Rice, J. A. (2007). Mathematical Statistics and Data Analysis. Thomson Brooks/Cole, 9.3. Available at: https://portal.tpu.ru/SHARED/d/DIMMASSIKK/academics/Additional_chapters_of_mathematics/Rice%20J.A.%20Mathematical%20Statistics%20and%20Data%20Analysis.pdf
  5. Lehmann, E. L., Romano, J. P. (2005). Testing Statistical Hypotheses. Springer. doi: https://doi.org/10.1007/0-387-27605-x
  6. Shvedov, A. S. (2016). Teoriya veroyatnostey i matematicheskaya statistika. Moscow: Vysshaya shkola ekonomiki, 286.
  7. Grauer, L. V., Arhipova, O. A. (2014). Proverka statisticheskih gipotez. Sankt-Peterburg: CS center.
  8. Ashkenazy, V. O. (2004). Optimal'nye statisticheskie resheniya. Tver': TGU, 126.
  9. Moore, D., McCabe, G. (2003). Introduction to the Practice of Statistics. W.H. Freeman, 426.
  10. Natan, A. A., Gorbachev, O. G., Guz, S. A. (2005). Matematicheskaya statistika. Moscow: MZ PRESS – MFTI, 160.
  11. Young, G. A., Smith, R. L. (2005). Essentials of statistical inference. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511755392
  12. Kobzar', A. I. (2012). Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnyh rabotnikov. Moscow: FIZMATLIT, 816.
  13. Kel'bert, M. Ya., Suhov, Yu. M. (2007). Veroyatnost' i statistika v primerah i zadachah. Vol. 1. Osnovnye ponyatiya teorii veroyatnostey i matematicheskoy statistiki. Moscow: MTSNMO, 456.
  14. Hypothesis Testing. Introduction. Available at: http://www.randomservices.org/random/hypothesis/Introduction.html
  15. Berger, J. O. (2003). Could Fisher, Jeffreys and Neyman Have Agreed on Testing? Statistical Science, 18 (1), 1–32. doi: https://doi.org/10.1214/ss/1056397485
  16. Raskin, L. G., Kirichenko, I. O., Seraya, O. V. (2014). Prikladnoe kontinual'noe lineynoe programmirovanie. Kharkiv: Oberig, 292.
  17. Dantsig, Dzh. (1966). Lineynoe programmirovanie, ego obobshcheniya i primeneniya. Moscow: Progress, 581.
  18. Yudin, D. B., Gol'shteyn, E. G. (1969). Lineynoe programmirovanie. Teoriya, metody i prilozheniya. Moscow: Nauka, 424.
  19. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: https://doi.org/10.1016/s0019-9958(65)90241-x
  20. Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11 (5), 341–356. doi: https://doi.org/10.1007/bf01001956
  21. Raskin, L., Sira, O. (2016). Fuzzy models of rough mathematics. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 53–60. doi: https://doi.org/10.15587/1729-4061.2016.86739
  22. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: https://doi.org/10.15587/1729-4061.2016.81292

Downloads

Published

2020-10-31

How to Cite

Raskin, L., & Sira, O. (2020). Development of modern models and methods of the theory of statistical hypothesis testing. Eastern-European Journal of Enterprise Technologies, 5(4 (107), 11–18. https://doi.org/10.15587/1729-4061.2020.214718

Issue

Section

Mathematics and Cybernetics - applied aspects