Subsolidus structure of the ZnO–SrO–Al2O3–SiO2 system as a base for designing radio-transparent ceramics

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217009

Keywords:

subsolidus structure, geometric-topological characteristics, willemite, strontium anorthite, radio transparent ceramics

Abstract

Designing new materials with unique properties requires scientifically substantiated approaches to problem-solving. Applying a physical-chemical analysis of oxide systems to devise the formulation for a material makes it possible to determine the conditions of phase formation and assess the manufacturability of compositions. Given the enormous number of experiments required to build the state diagrams of multi-component oxide systems, the physical-chemical modeling is the most appropriate method to study their structure. This paper substantiates the selection of the basic oxide system ZnO‒SrO‒Al2O3‒SiO2 to design radio-transparent ceramics and reports the results of studying its subsolidus structure using modern data on splitting the system into elementary volumes. The main geometric-topological characteristics of the system's internal tetrahedra have been defined and analyzed; the minimum temperatures for melt occurrence have been calculated, as well as the eutectic compositions. To design radio-transparent ceramics with a predefined level of dielectric characteristics (ε<10, tgd<10-2), a region of the formulations has been selected within the tetrahedron SiO2–ZnAl2O4–ZnSiO4–SrAl2Si2O8 concentrations, which ensure the synthesis of the target phases of willemite and strontium anorthite. By using the new data, heat-resistant polyphase ceramics have been obtained, whose dielectric characteristics (ε=5.98‒8.96; tgd=0.004‒0.008) meet the requirements for radio transparent materials. The optimal ratio of phases (ZnSiO4:SrAl2Si2O8=1:1) has been established, which makes it possible to reduce dielectric permeability (ε=5.98) and minimize dielectric losses (tgd=0.004). Scanning electron microscopy and X-ray analysis were used to determine the structural and phase features of the new ceramic materials

Author Biographies

Elena Fedorenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Technology of Ceramics, Refractories, Glass and Enamels

Georgiy Lisachuk, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Technology of Ceramics, Refractories, Glass and Enamels

Ruslan Kryvobok, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Technology of Ceramics, Refractories, Glass and Enamels

Artem Zakharov, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Technology of Ceramics, Refractories, Glass and Enamels

References

  1. Ivakhnenko, Y. A., Varrik, N. M., Maksimov, V. G. (2016). The high-temperature radiolucent ceramic composite materials for the radomes and other products of aviation engineering (review). Proceedings of VIAM, 5 (41), 36‒43. doi: https://doi.org/10.18577/2307-6046-2016-0-5-5-5
  2. Kablov, E. N., Grashchenkov, D. V., Isaeva, N. V., Solntsev, S. S., Sevast’yanov, V. G. (2012). Glass and ceramics based high-temperature composite materials for use in aviation technology. Glass and Ceramics, 69 (3-4), 109–112. doi: https://doi.org/10.1007/s10717-012-9425-1
  3. Sarkisov, P. D., Orlova, L. A., Popovich, N. V. et. al. (2011). Sovremennoe sostoyanie voprosa v oblasti tehnologii i proizvodstva sitallov na osnove alyumosilikatnyh sistem. Stekloobrazovanie, kristallizatsiya i fazoobrazovanie pri poluchenii strontsiy-anortitovyh i tsel'zianovyh sitallov. Vse materialy. Entsiklopedicheskiy spravochnik, 8. Available at: https://viam.ru/public/files/2011/2011-205757.pdf
  4. Miheev, S. V., Stroganov, G. B., Romashin, A. G. (2002). Keramicheskie i kompozitsionnye materialy v aviatsionnoy tehnike. Moscow: Al'teks, 276. Available at: https://www.twirpx.com/file/824198/
  5. Uvarova, N. E., Anan'eva, Yu. E., Bolokina, E. G., Orlova, L. A., Popovich, N. V. (2007). Radioprozrachnye steklokeramicheskie materialy. Uspehi v himii i himicheskoy tehnologii, 7 (75), 96‒99. Available at: https://cyberleninka.ru/article/n/radioprozrachnye-steklokeramicheskie-materialy
  6. Shchegoleva, N. E., Chainikova, A. S., Orlova, L. A. (2018). Sintering process analysis in the manufacture of strontiumaluminosilicate glass ceramics by power-pressed method. Aviation Materials and Technologies, 4 (53), 55‒62. doi: https://doi.org/10.18577/2071-9140-2018-0-4-55-62
  7. Suzdal’tsev, E. I. (2015). Radio-Transparent Ceramics: Yesterday, Today, Tomorrow. Refractories and Industrial Ceramics, 55 (5), 377–390. doi: https://doi.org/10.1007/s11148-015-9731-6
  8. Khomenko, E. S., Zaichuk, A. V., Karasik, E. V., Kunitsa, A. A. (2018). Quartz ceramics modified by nanodispersed silica additive. Functional Materials, 25 (3), 613–618. doi: https://doi.org/10.15407/fm25.03.613
  9. Abyzov, A. M. (2019). Aluminum Oxide and Alumina Ceramics (Review). Part 2. Foreign Manufacturers of Alumina Ceramics. Technologies and Research in the Field of Alumina Ceramics1. Refractories and Industrial Ceramics, 60 (1), 33–42. doi: https://doi.org/10.1007/s11148-019-00305-1
  10. Rumyantsev, S. L., Shur, M. S., Levinshtein, M. E. (2004). Materials properties of nitrides: summary. International Journal of High Speed Electronics and Systems, 14 (01), 1–19. doi: https://doi.org/10.1142/s012915640400220x
  11. Lisachuk, G. V., Kryvobok, R. V., Dajneko, K. B., Zakharov, A. V., Fedorenko, E. Y., Prytkina, M. S. et. al. (2017). Optimization of the compositions area of radiotransparent ceramic in the SrO-Al2O3-SiO2 system. Przegląd Elektrotechniczny, 93 (3), 79–82. doi: https://doi.org/10.15199/48.2017.03.19
  12. Lisachuk, G. V., Kryvobok, R. V., Fedorenko, E. Y., Zakharov, A. V. (2015). Ceramic radiotransparent materials on the basis of BaO-Al2O3-SiO2 and SrO-Al2O3-SiO2 systems. Epitoanyag - Journal of Silicate Based and Composite Materials, 67 (1), 20–23. doi: https://doi.org/10.14382/epitoanyag-jsbcm.2015.4
  13. Zaichuk, A. V., Amelina, A. A., Karasik, Y. V., Khomenko, Y. S., Lementareva, V. A., Saltykov, D. Yu. (2019). Radio-transparent ceramic materials of spodumene-cordierite composition. Functional Materials, 26 (1), 174–181. doi: https://doi.org/10.15407/fm26.01.174
  14. Wang, X.-C., Lei, W., Ang, R., Lu, W.-Z. (2013). ZnAl2O4–TiO2–SrAl2Si2O8 low-permittivity microwave dielectric ceramics. Ceramics International, 39 (2), 1707–1710. doi: https://doi.org/10.1016/j.ceramint.2012.08.013
  15. Ryschenko, M. I., Pitak, Y. N., Fedorenko, E. Yu., Lisyutkina, M. Yu., Shevtsov, A. V. (2016). Subsolidus conceptual design of CaO-Al2O3-TiO2-SiO2 system and its significance for manufacturing advanced ceramics. China's Refractories, 25 (1), 44‒52. Available at: https://www.researchgate.net/publication/305174725_Subsolidus_conceptual_design_of_CaO-Al2O3-TiO2SiO2_system_and_its_significance_for_manufacturing_advanced_ceramics
  16. Lisachuk, G., Fedorenko, O., Pitak, O., Bilostotska, L., Trusova, Y., Pavlova, L., Dajneko, K. (2013). Theoretical background of alkaline-free tin content coatings on ceramics in the system RO-SnO2-Al2O3-SiO2. Chemistry & Chemical Technology, 7 (3), 351‒354. Available at: http://science2016.lp.edu.ua/sites/default/files/Full_text_of_%20papers/full_text_556.pdf
  17. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S. et. al. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1 (1), 011002. doi: https://doi.org/10.1063/1.4812323
  18. Wong-Ng, W., Roth, R. S., Vanderah, T. A., McMurdie, H. F. (2001). Phase equilibria and crystallography of ceramic oxides. Journal of Research of the National Institute of Standards and Technology, 106 (6), 1097– 1134. doi: https://doi.org/10.6028/jres.106.059
  19. Inorganic Material Database (AtomWork). National Institute for Materials Science (NIMS). Available at: https://crystdb.nims.go.jp/en/
  20. Barzakovskiy, V. P., Boykova, A. I., Kurtseva, N. N., Lapin, V. V., Toropov, N. A. (1972). Diagrammy sostoyaniya silikatnyh sistem. Spravochnik. Vypusk tretiy. Troynye silikatnye sistemy. Leningrad: Nauka, 448.
  21. Berezhnoy, A. S. (1970). Mnogokomponentnye sistemy okislov. Kyiv: Naukova dumka, 544.
  22. The Materials Project. Available at: https://materialsproject.org/#apps/phasediagram
  23. Lisachuk, G., Kryvobok, R., Zakharov, A., Tsovma, V., Lapuzina, O. (2017). Influence of complex activators of sintering on creating radiotransparent ceramics in SrO–Al2O3–SiO2. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 10–15. doi: https://doi.org/10.15587/1729-4061.2017.91110

Downloads

Published

2020-12-31

How to Cite

Fedorenko, E., Lisachuk, G., Prytkina, M., Kryvobok, R., & Zakharov, A. (2020). Subsolidus structure of the ZnO–SrO–Al2O3–SiO2 system as a base for designing radio-transparent ceramics. Eastern-European Journal of Enterprise Technologies, 6(6 (108), 6–14. https://doi.org/10.15587/1729-4061.2020.217009

Issue

Section

Technology organic and inorganic substances