Subsolidus structure of the ZnO–SrO–Al2O3–SiO2 system as a base for designing radio-transparent ceramics
DOI:
https://doi.org/10.15587/1729-4061.2020.217009Keywords:
subsolidus structure, geometric-topological characteristics, willemite, strontium anorthite, radio transparent ceramicsAbstract
Designing new materials with unique properties requires scientifically substantiated approaches to problem-solving. Applying a physical-chemical analysis of oxide systems to devise the formulation for a material makes it possible to determine the conditions of phase formation and assess the manufacturability of compositions. Given the enormous number of experiments required to build the state diagrams of multi-component oxide systems, the physical-chemical modeling is the most appropriate method to study their structure. This paper substantiates the selection of the basic oxide system ZnO‒SrO‒Al2O3‒SiO2 to design radio-transparent ceramics and reports the results of studying its subsolidus structure using modern data on splitting the system into elementary volumes. The main geometric-topological characteristics of the system's internal tetrahedra have been defined and analyzed; the minimum temperatures for melt occurrence have been calculated, as well as the eutectic compositions. To design radio-transparent ceramics with a predefined level of dielectric characteristics (ε<10, tgd<10-2), a region of the formulations has been selected within the tetrahedron SiO2–ZnAl2O4–ZnSiO4–SrAl2Si2O8 concentrations, which ensure the synthesis of the target phases of willemite and strontium anorthite. By using the new data, heat-resistant polyphase ceramics have been obtained, whose dielectric characteristics (ε=5.98‒8.96; tgd=0.004‒0.008) meet the requirements for radio transparent materials. The optimal ratio of phases (ZnSiO4:SrAl2Si2O8=1:1) has been established, which makes it possible to reduce dielectric permeability (ε=5.98) and minimize dielectric losses (tgd=0.004). Scanning electron microscopy and X-ray analysis were used to determine the structural and phase features of the new ceramic materials
References
- Ivakhnenko, Y. A., Varrik, N. M., Maksimov, V. G. (2016). The high-temperature radiolucent ceramic composite materials for the radomes and other products of aviation engineering (review). Proceedings of VIAM, 5 (41), 36‒43. doi: https://doi.org/10.18577/2307-6046-2016-0-5-5-5
- Kablov, E. N., Grashchenkov, D. V., Isaeva, N. V., Solntsev, S. S., Sevast’yanov, V. G. (2012). Glass and ceramics based high-temperature composite materials for use in aviation technology. Glass and Ceramics, 69 (3-4), 109–112. doi: https://doi.org/10.1007/s10717-012-9425-1
- Sarkisov, P. D., Orlova, L. A., Popovich, N. V. et. al. (2011). Sovremennoe sostoyanie voprosa v oblasti tehnologii i proizvodstva sitallov na osnove alyumosilikatnyh sistem. Stekloobrazovanie, kristallizatsiya i fazoobrazovanie pri poluchenii strontsiy-anortitovyh i tsel'zianovyh sitallov. Vse materialy. Entsiklopedicheskiy spravochnik, 8. Available at: https://viam.ru/public/files/2011/2011-205757.pdf
- Miheev, S. V., Stroganov, G. B., Romashin, A. G. (2002). Keramicheskie i kompozitsionnye materialy v aviatsionnoy tehnike. Moscow: Al'teks, 276. Available at: https://www.twirpx.com/file/824198/
- Uvarova, N. E., Anan'eva, Yu. E., Bolokina, E. G., Orlova, L. A., Popovich, N. V. (2007). Radioprozrachnye steklokeramicheskie materialy. Uspehi v himii i himicheskoy tehnologii, 7 (75), 96‒99. Available at: https://cyberleninka.ru/article/n/radioprozrachnye-steklokeramicheskie-materialy
- Shchegoleva, N. E., Chainikova, A. S., Orlova, L. A. (2018). Sintering process analysis in the manufacture of strontiumaluminosilicate glass ceramics by power-pressed method. Aviation Materials and Technologies, 4 (53), 55‒62. doi: https://doi.org/10.18577/2071-9140-2018-0-4-55-62
- Suzdal’tsev, E. I. (2015). Radio-Transparent Ceramics: Yesterday, Today, Tomorrow. Refractories and Industrial Ceramics, 55 (5), 377–390. doi: https://doi.org/10.1007/s11148-015-9731-6
- Khomenko, E. S., Zaichuk, A. V., Karasik, E. V., Kunitsa, A. A. (2018). Quartz ceramics modified by nanodispersed silica additive. Functional Materials, 25 (3), 613–618. doi: https://doi.org/10.15407/fm25.03.613
- Abyzov, A. M. (2019). Aluminum Oxide and Alumina Ceramics (Review). Part 2. Foreign Manufacturers of Alumina Ceramics. Technologies and Research in the Field of Alumina Ceramics1. Refractories and Industrial Ceramics, 60 (1), 33–42. doi: https://doi.org/10.1007/s11148-019-00305-1
- Rumyantsev, S. L., Shur, M. S., Levinshtein, M. E. (2004). Materials properties of nitrides: summary. International Journal of High Speed Electronics and Systems, 14 (01), 1–19. doi: https://doi.org/10.1142/s012915640400220x
- Lisachuk, G. V., Kryvobok, R. V., Dajneko, K. B., Zakharov, A. V., Fedorenko, E. Y., Prytkina, M. S. et. al. (2017). Optimization of the compositions area of radiotransparent ceramic in the SrO-Al2O3-SiO2 system. Przegląd Elektrotechniczny, 93 (3), 79–82. doi: https://doi.org/10.15199/48.2017.03.19
- Lisachuk, G. V., Kryvobok, R. V., Fedorenko, E. Y., Zakharov, A. V. (2015). Ceramic radiotransparent materials on the basis of BaO-Al2O3-SiO2 and SrO-Al2O3-SiO2 systems. Epitoanyag - Journal of Silicate Based and Composite Materials, 67 (1), 20–23. doi: https://doi.org/10.14382/epitoanyag-jsbcm.2015.4
- Zaichuk, A. V., Amelina, A. A., Karasik, Y. V., Khomenko, Y. S., Lementareva, V. A., Saltykov, D. Yu. (2019). Radio-transparent ceramic materials of spodumene-cordierite composition. Functional Materials, 26 (1), 174–181. doi: https://doi.org/10.15407/fm26.01.174
- Wang, X.-C., Lei, W., Ang, R., Lu, W.-Z. (2013). ZnAl2O4–TiO2–SrAl2Si2O8 low-permittivity microwave dielectric ceramics. Ceramics International, 39 (2), 1707–1710. doi: https://doi.org/10.1016/j.ceramint.2012.08.013
- Ryschenko, M. I., Pitak, Y. N., Fedorenko, E. Yu., Lisyutkina, M. Yu., Shevtsov, A. V. (2016). Subsolidus conceptual design of CaO-Al2O3-TiO2-SiO2 system and its significance for manufacturing advanced ceramics. China's Refractories, 25 (1), 44‒52. Available at: https://www.researchgate.net/publication/305174725_Subsolidus_conceptual_design_of_CaO-Al2O3-TiO2SiO2_system_and_its_significance_for_manufacturing_advanced_ceramics
- Lisachuk, G., Fedorenko, O., Pitak, O., Bilostotska, L., Trusova, Y., Pavlova, L., Dajneko, K. (2013). Theoretical background of alkaline-free tin content coatings on ceramics in the system RO-SnO2-Al2O3-SiO2. Chemistry & Chemical Technology, 7 (3), 351‒354. Available at: http://science2016.lp.edu.ua/sites/default/files/Full_text_of_%20papers/full_text_556.pdf
- Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S. et. al. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1 (1), 011002. doi: https://doi.org/10.1063/1.4812323
- Wong-Ng, W., Roth, R. S., Vanderah, T. A., McMurdie, H. F. (2001). Phase equilibria and crystallography of ceramic oxides. Journal of Research of the National Institute of Standards and Technology, 106 (6), 1097– 1134. doi: https://doi.org/10.6028/jres.106.059
- Inorganic Material Database (AtomWork). National Institute for Materials Science (NIMS). Available at: https://crystdb.nims.go.jp/en/
- Barzakovskiy, V. P., Boykova, A. I., Kurtseva, N. N., Lapin, V. V., Toropov, N. A. (1972). Diagrammy sostoyaniya silikatnyh sistem. Spravochnik. Vypusk tretiy. Troynye silikatnye sistemy. Leningrad: Nauka, 448.
- Berezhnoy, A. S. (1970). Mnogokomponentnye sistemy okislov. Kyiv: Naukova dumka, 544.
- The Materials Project. Available at: https://materialsproject.org/#apps/phasediagram
- Lisachuk, G., Kryvobok, R., Zakharov, A., Tsovma, V., Lapuzina, O. (2017). Influence of complex activators of sintering on creating radiotransparent ceramics in SrO–Al2O3–SiO2. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 10–15. doi: https://doi.org/10.15587/1729-4061.2017.91110
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Elena Fedorenko, Georgiy Lisachuk, Mariia Prytkina, Ruslan Kryvobok, Artem Zakharov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.