An analysis of SmBa0.5Sr0.5Co2O5+δ double perovskite oxide for intermediate–temperature solid oxide fuel cells
DOI:
https://doi.org/10.15587/1729-4061.2021.226342Keywords:
solid oxide fuel cell, thermal properties, oxygen content, electrochemical properties, cell performanceAbstract
The main obstacle to solid oxide fuel cells (SOFCs) implementation is the high operating temperature in the range of 800–1,000 °C so that it has an impact on high costs. SOFCs work at high temperatures causing rapid breakdown between layers (anode, electrolyte, and cathode) because they have different thermal expansion. The study focused on reducing the operating temperature in the medium temperature range. SmBa0.5Sr0.5Co2O5+δ (SBSC) oxide was studied as a cathode material for IT-SOFCs based on Ce0.8Sm0.2O1.9 (SDC) electrolyte. The SBSC powder was prepared using the solid-state reaction method with repeated ball-milling and calcining. Alumina grinding balls are used because they have a high hardness to crush and smooth the powder of SOFC material. The specimens were then tested as cathode material for SOFC at intermediate temperature (600–800 °C) using X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), electrochemical, and scanning electron microscopy (SEM) tests. The X-ray powder diffraction (XRD) pattern of SBSC powder can be indexed to a tetragonal space group (P4/mmm). The overall change in mass of the SBSC powder is 8 % at a temperature range of 125–800 °C. A sample of SBSC powder showed a high oxygen content (5+δ) that reached 5.92 and 5.41 at temperatures of 200 °C and 800 °C, respectively. High diffusion levels and increased surface activity of oxygen reduction reactions (ORRs) can be affected by high oxygen content (5+δ). The polarization resistance (Rp) of samples sintered at 1000 °C is 4.02 Ωcm2 at 600 °C, 1.04 Ωcm2 at 700 °C, and 0.42 Ωcm2 at 800 °C. The power density of the SBSC cathode is 336.1, 387.3, and 357.4 mW/cm2 at temperatures of 625 °C, 650 °C, and 675 °C, respectively. The SBSC demonstrates as a prospective cathode material for IT-SOFC
References
- Steele, B. C. H., Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414 (6861), 345–352. doi: https://doi.org/10.1038/35104620
- Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76 (3), 563–588. doi: https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
- Ruiz-Morales, J. C., Marrero-López, D., Canales-Vázquez, J., Irvine, J. T. S. (2011). Symmetric and reversible solid oxide fuel cells. RSC Advances, 1 (8), 1403. doi: https://doi.org/10.1039/c1ra00284h
- Skinner, S. J. (2001). Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. International Journal of Inorganic Materials, 3 (2), 113–121. doi: https://doi.org/10.1016/s1466-6049(01)00004-6
- Brett, D. J. L., Atkinson, A., Brandon, N. P., Skinner, S. J. (2008). Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 37 (8), 1568. doi: https://doi.org/10.1039/b612060c
- Susanto, I., Kamal, D. M., Ruswanto, S., Subarkah, R., Zainuri, F., Permana, S. et. al. (2020). Development of cobalt-free oxide (Sm0.5Sr0.5Fe0.8Cr0.2O3-δ) cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Eastern-European Journal of Enterprise Technologies, 6 (5 (108)), 15–20. doi: https://doi.org/10.15587/1729-4061.2020.217282
- Liu, H., Zhu, X., Cheng, M., Cong, Y., Yang, W. (2011). Novel Mn1.5Co1.5O4spinel cathodes for intermediate temperature solid oxidefuel cells. Chemical Communications, 47 (8), 2378–2380. doi: https://doi.org/10.1039/c0cc04300a
- Adler, S. B. (2004). Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes†. Chemical Reviews, 104 (10), 4791–4844. doi: https://doi.org/10.1021/cr020724o
- Takeda, Y., Kanno, R., Noda, M., Tomida, Y., Yamamoto, O. (1987). Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia. Journal of The Electrochemical Society, 134 (11), 2656–2661. doi: https://doi.org/10.1149/1.2100267
- Adler, S. B., Lane, J. A., Steele, B. C. H. (1996). Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes. Journal of The Electrochemical Society, 143 (11), 3554–3564. doi: https://doi.org/10.1149/1.1837252
- Subardi, A., Cheng, M.-H., Fu, Y.-P. (2014). Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+ cathode for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 39 (35), 20783–20790. doi: https://doi.org/10.1016/j.ijhydene.2014.06.134
- Zhao, F., Wang, S., Brinkman, K., Chen, F. (2010). Layered perovskite PrBa0.5Sr0.5Co2O5+δ as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. Journal of Power Sources, 195 (17), 5468–5473. doi: https://doi.org/10.1016/j.jpowsour.2010.03.088
- Zhou, Q., He, T., Ji, Y. (2008). SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 185 (2), 754–758. doi: https://doi.org/10.1016/j.jpowsour.2008.07.064
- Tarancón, A., Burriel, M., Santiso, J., Skinner, S. J., Kilner, J. A. (2010). Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 20 (19), 3799. doi: https://doi.org/10.1039/b922430k
- Chen, D., Ran, R., Zhang, K., Wang, J., Shao, Z. (2009). Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. Journal of Power Sources, 188 (1), 96–105. doi: https://doi.org/10.1016/j.jpowsour.2008.11.045
- Kuroda, C., Zheng, K., Świerczek, K. (2013). Characterization of novel GdBa0.5Sr0.5Co2−xFexO5+δ perovskites for application in IT-SOFC cells. International Journal of Hydrogen Energy, 38 (2), 1027–1038. doi: https://doi.org/10.1016/j.ijhydene.2012.10.085
- Tarancón, A., Morata, A., Dezanneau, G., Skinner, S. J., Kilner, J. A., Estradé, S. et. al. (2007). GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 174 (1), 255–263. doi: https://doi.org/10.1016/j.jpowsour.2007.08.077
- Chang, A., Skinner, S., Kilner, J. (2006). Electrical properties of GdBaCo2O5+x for ITSOFC applications. Solid State Ionics, 177 (19-25), 2009–2011. doi: https://doi.org/10.1016/j.ssi.2006.05.047
- Gu, H., Chen, H., Gao, L., Zheng, Y., Zhu, X., Guo, L. (2009). Oxygen reduction mechanism of NdBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells under cathodic polarization. International Journal of Hydrogen Energy, 34 (5), 2416–2420. doi: https://doi.org/10.1016/j.ijhydene.2009.01.003
- Kong, X., Ding, X. (2011). Novel layered perovskite SmBaCu2O5+δ as a potential cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 36 (24), 15715–15721. doi: https://doi.org/10.1016/j.ijhydene.2011.09.035
- Kim, J. H., Kim, Y., Connor, P. A., Irvine, J. T. S., Bae, J., Zhou, W. (2009). Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 194 (2), 704–711. doi: https://doi.org/10.1016/j.jpowsour.2009.06.024
- Liu, W., Yang, C., Wu, X., Gao, H., Chen, Z. (2011). Oxygen relaxation and phase transition in GdBaCo2O5+δ oxide. Solid State Ionics, 192 (1), 245–247. doi: https://doi.org/10.1016/j.ssi.2010.04.028
- Kim, J.-H., Mogni, L., Prado, F., Caneiro, A., Alonso, J. A., Manthiram, A. (2009). High Temperature Crystal Chemistry and Oxygen Permeation Properties of the Mixed Ionic–Electronic Conductors LnBaCo2O5+δ (Ln = Lanthanide) . Journal of The Electrochemical Society, 156 (12), B1376. doi: https://doi.org/10.1149/1.3231501
- Subardi, A., Chen, C.-C., Cheng, M.-H., Chang, W.-K., Fu, Y.-P. (2016). Electrical, thermal and electrochemical properties of SmBa1−xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 204, 118–127. doi: https://doi.org/10.1016/j.electacta.2016.04.069
- Lü, S., Long, G., Meng, X., Ji, Y., Lü, B., Zhao, H. (2012). PrBa0.5Sr0.5Co2O5+x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 37 (7), 5914–5919. doi: https://doi.org/10.1016/j.ijhydene.2011.12.134
- Fu, Y.-P., Wen, S.-B., Lu, C.-H. (2007). Preparation and Characterization of Samaria-Doped Ceria Electrolyte Materials for Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 91 (1), 127–131. doi: https://doi.org/10.1111/j.1551-2916.2007.01923.x
- Kuhn, M., Kim, J. J., Bishop, S. R., Tuller, H. L. (2013). Oxygen Nonstoichiometry and Defect Chemistry of Perovskite-Structured BaxSr1–xTi1–yFeyO3–y/2+δ Solid Solutions. Chemistry of Materials, 25 (15), 2970–2975. doi: https://doi.org/10.1021/cm400546z
- Fu, Y.-P., Ouyang, J., Li, C.-H., Hu, S.-H. (2013). Chemical bulk diffusion coefficient of Sm0.5Sr0.5CoO3−δ cathode for solid oxide fuel cells. Journal of Power Sources, 240, 168–177. doi: https://doi.org/10.1016/j.jpowsour.2013.03.138
- Aksenova, T. V., Gavrilova, L. Y., Yaremchenko, A. A., Cherepanov, V. A., Kharton, V. V. (2010). Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo2O5+δ and SmBaCo2O5+δ. Materials Research Bulletin, 45 (9), 1288–1292. doi: https://doi.org/10.1016/j.materresbull.2010.05.004
- Zhang, K., Ge, L., Ran, R., Shao, Z., Liu, S. (2008). Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 56 (17), 4876–4889. doi: https://doi.org/10.1016/j.actamat.2008.06.004
- Kim, J., Choi, S., Park, S., Kim, C., Shin, J., Kim, G. (2013). Effect of Mn on the electrochemical properties of a layered perovskite NdBa0.5Sr0.5Co2−xMnxO5+δ (x=0, 0.25, and 0.5) for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 112, 712–718. doi: https://doi.org/10.1016/j.electacta.2013.09.014
- Subardi, A., Fu, Y.-P. (2017). Electrochemical and thermal properties of SmBa0.5Sr0.5Co2O5+δ cathode impregnated with Ce0.8Sm0.2O1.9 nanoparticles for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 42 (38), 24338–24346. doi: https://doi.org/10.1016/j.ijhydene.2017.08.010
- West, M., Manthiram, A. (2013). Layered LnBa1−xSrxCoCuO5+δ (Ln = Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 38 (8), 3364–3372. doi: https://doi.org/10.1016/j.ijhydene.2012.12.133
- Choi, M.-B., Lee, K.-T., Yoon, H.-S., Jeon, S.-Y., Wachsman, E. D., Song, S.-J. (2012). Electrochemical properties of ceria-based intermediate temperature solid oxide fuel cell using microwave heat-treated La0.1Sr0.9Co0.8Fe0.2O3−δ as a cathode. Journal of Power Sources, 220, 377–382. doi: https://doi.org/10.1016/j.jpowsour.2012.07.122
- Jun, A., Shin, J., Kim, G. (2013). High redox and performance stability of layered SmBa0.5Sr0.5Co1.5Cu0.5O5+δ perovskite cathodes for intermediate-temperature solid oxide fuel cells. Physical Chemistry Chemical Physics, 15 (45), 19906. doi: https://doi.org/10.1039/c3cp53883d
- Kostogloudis, G., Vasilakos, N., Ftikos, Ch. (1998). Crystal structure, thermal and electrical properties of Pr1−xSrxCoO3−δ (x=0, 0.15, 0.3, 0.4, 0.5) perovskite oxides. Solid State Ionics, 106 (3-4), 207–218. doi: https://doi.org/10.1016/s0167-2738(97)00506-7
- Meuffels, P. (2007). Propane gas sensing with high-density SrTi0.6Fe0.4O(3−δ) ceramics evaluated by thermogravimetric analysis. Journal of the European Ceramic Society, 27 (1), 285–290. doi: https://doi.org/10.1016/j.jeurceramsoc.2006.05.078
- Lia, S., Jin, W., Xu, N., Shi, J. (2001). Mechanical strength, and oxygen and electronic transport properties of SrCo0.4Fe0.6O3−δ-YSZ membranes. Journal of Membrane Science, 186 (2), 195–204. doi: https://doi.org/10.1016/s0376-7388(00)00681-5
- Kim, G., Wang, S., Jacobson, A. J., Reimus, L., Brodersen, P., & Mims, C. A. (2007). Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry, 17 (24), 2500. doi: https://doi.org/10.1039/b618345j
- Meng, F., Xia, T., Wang, J., Shi, Z., Lian, J., Zhao, H. et. al. (2014). Evaluation of layered perovskites YBa1−xSrxCo2O5+δ as cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 39 (9), 4531–4543. doi: https://doi.org/10.1016/j.ijhydene.2014.01.008
- Baek, S.-W., Kim, J. H., Bae, J. (2008). Characteristics of ABO3 and A2BO4 (ASm, Sr; BCo, Fe, Ni) samarium oxide system as cathode materials for intermediate temperature-operating solid oxide fuel cell. Solid State Ionics, 179 (27-32), 1570–1574. doi: https://doi.org/10.1016/j.ssi.2007.12.010
- Nam, J. H., Jeon, D. H. (2006). A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta, 51 (17), 3446–3460. doi: https://doi.org/10.1016/j.electacta.2005.09.041
- Andersson, M., Yuan, J., Sundén, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy, 87 (5), 1461–1476. doi: https://doi.org/10.1016/j.apenergy.2009.11.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Adi Subardi, Iwan Susanto, Ratna Kartikasari, Tugino Tugino, Hasta Kuntara, Andy Erwin Wijaya, Muhamad Jalu Purnomo, Ade Indra, Hendriwan Fahmi, Yen-Pei Fu
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.