Аналіз оксиду подвійного перовскіту SmBa0.5Sr0.5Co2O5+δ для твердооксидних паливних елементів, що працюють в діапазоні проміжних температур

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2021.226342

Ключові слова:

твердооксидний паливний елемент, теплові властивості, вміст кисню, електрохімічні властивості, продуктивність елемента

Анотація

Основною перешкодою для впровадження твердооксидних паливних елементів (ТОПЕ) є висока робоча температура в діапазоні 800–1000 °С, що позначається на високих витратах. ТОПЕ працюють при високих температурах, що викликає швидкий розрив між шарами (анод, електроліт і катод), оскільки вони мають різне теплове розширення. Дослідження присвячено зниженню робочої температури в середньому температурному діапазоні. В якості катодного матеріалу для ПТ-ТОПЕ на основі електроліту Ce0.8Sm0.2O1.9 (SDC) був досліджений оксид SmBa0.5Sr0.5Co2O5+δ (SBSC). Порошок SBSC отримували методом твердофазної реакції з повторним подрібненням в кульовому млині і прожарюванням. Використовувалися мелючі кулі з оксиду алюмінію оскільки вони мають високу твердість для подрібнення і згладжування порошку матеріалу ТОПЕ. Потім було проведено випробування зразків в якості катодного матеріалу для ТОПЕ при проміжній температурі (600–800 °C) з використанням порошкової рентгенівської дифракції (ПРД), термогравіметричного аналізу (ТГА), електрохімічних випробувань і скануючої електронної мікроскопії (СЕМ). Дифрактограму порошку SBSC можна індексувати за тетрагональною кристалографічною групою (P4/mmm). Загальна зміна маси порошку SBSC становить 8 % в діапазоні температур 125–800 °C. Зразок порошку SBSC показав високий вміст кисню (5+δ), що досягав 5,92 і 5,41 при температурах 200 °C і 800 °C відповідно. Високий вміст кисню (5+δ) може впливати на високі рівні дифузії і підвищену поверхневу активність реакцій відновлення кисню (РВК). Поляризаційний опір (Rp) зразків, спечених при 1000 °C, становить 4,02 Омсм2 при 600 °C, 1,04 Омсм2 при 700 °C і 0,42 Омсм2 при 800 °C. Питома потужність катода SBSC становить 336,1, 387,3 і 357,4 МВт/см2 при температурі 625 °С, 650 °С і 675 °С відповідно. SBSC демонструє перспективність в якості катодного матеріалу для ПТ-ТОПЕ

Біографії авторів

Adi Subardi, Institut Teknologi Nasional Yogyakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Iwan Susanto, Politeknik Negeri Jakarta

Doctor of Materials Science and Engineering, Assistance Professor

Department of Mechanical Engineering

Ratna Kartikasari, Institut Teknologi Nasional Yogyakarta

Doctor of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Tugino Tugino, Institut Teknologi Nasional Yogyakarta

Master of Electrical Engineering, Associate Professor

Department of Electrical Engineering

Hasta Kuntara, Institut Teknologi Nasional Yogyakarta

Master of Mechanical Engineering, Assistance Professor

Department of Mechanical Engineering

Andy Erwin Wijaya, Institut Teknologi Nasional Yogyakarta

Doctor of Mining Engineering, Assistance Professor

Department of Mining Engineering

Muhamad Jalu Purnomo, Institut Teknologi Dirgantara Adisutjipto

Doctor Cand. (Ph.D.), Assistance Professor

Departement of Aeronautics

Ade Indra, Institut Teknologi Padang (ITP)

Doctor Cand. (Ph.D.), Associate Professor

Department of Mechanical Engineering

Hendriwan Fahmi, Institut Teknologi Padang (ITP)

Master of Mechanical Engineering, Associate Professor

Department of Mechanical Engineering

Yen-Pei Fu, National Dong Hwa University

Doctor of Materials, Professor

Department of Materials Science and Engineering

Посилання

  1. Steele, B. C. H., Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414 (6861), 345–352. doi: https://doi.org/10.1038/35104620
  2. Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76 (3), 563–588. doi: https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  3. Ruiz-Morales, J. C., Marrero-López, D., Canales-Vázquez, J., Irvine, J. T. S. (2011). Symmetric and reversible solid oxide fuel cells. RSC Advances, 1 (8), 1403. doi: https://doi.org/10.1039/c1ra00284h
  4. Skinner, S. J. (2001). Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. International Journal of Inorganic Materials, 3 (2), 113–121. doi: https://doi.org/10.1016/s1466-6049(01)00004-6
  5. Brett, D. J. L., Atkinson, A., Brandon, N. P., Skinner, S. J. (2008). Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 37 (8), 1568. doi: https://doi.org/10.1039/b612060c
  6. Susanto, I., Kamal, D. M., Ruswanto, S., Subarkah, R., Zainuri, F., Permana, S. et. al. (2020). Development of cobalt-free oxide (Sm0.5Sr0.5Fe0.8Cr0.2O3-δ) cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Eastern-European Journal of Enterprise Technologies, 6 (5 (108)), 15–20. doi: https://doi.org/10.15587/1729-4061.2020.217282
  7. Liu, H., Zhu, X., Cheng, M., Cong, Y., Yang, W. (2011). Novel Mn1.5Co1.5O4spinel cathodes for intermediate temperature solid oxidefuel cells. Chemical Communications, 47 (8), 2378–2380. doi: https://doi.org/10.1039/c0cc04300a
  8. Adler, S. B. (2004). Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes†. Chemical Reviews, 104 (10), 4791–4844. doi: https://doi.org/10.1021/cr020724o
  9. Takeda, Y., Kanno, R., Noda, M., Tomida, Y., Yamamoto, O. (1987). Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia. Journal of The Electrochemical Society, 134 (11), 2656–2661. doi: https://doi.org/10.1149/1.2100267
  10. Adler, S. B., Lane, J. A., Steele, B. C. H. (1996). Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes. Journal of The Electrochemical Society, 143 (11), 3554–3564. doi: https://doi.org/10.1149/1.1837252
  11. Subardi, A., Cheng, M.-H., Fu, Y.-P. (2014). Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+ cathode for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 39 (35), 20783–20790. doi: https://doi.org/10.1016/j.ijhydene.2014.06.134
  12. Zhao, F., Wang, S., Brinkman, K., Chen, F. (2010). Layered perovskite PrBa0.5Sr0.5Co2O5+δ as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. Journal of Power Sources, 195 (17), 5468–5473. doi: https://doi.org/10.1016/j.jpowsour.2010.03.088
  13. Zhou, Q., He, T., Ji, Y. (2008). SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 185 (2), 754–758. doi: https://doi.org/10.1016/j.jpowsour.2008.07.064
  14. Tarancón, A., Burriel, M., Santiso, J., Skinner, S. J., Kilner, J. A. (2010). Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 20 (19), 3799. doi: https://doi.org/10.1039/b922430k
  15. Chen, D., Ran, R., Zhang, K., Wang, J., Shao, Z. (2009). Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. Journal of Power Sources, 188 (1), 96–105. doi: https://doi.org/10.1016/j.jpowsour.2008.11.045
  16. Kuroda, C., Zheng, K., Świerczek, K. (2013). Characterization of novel GdBa0.5Sr0.5Co2−xFexO5+δ perovskites for application in IT-SOFC cells. International Journal of Hydrogen Energy, 38 (2), 1027–1038. doi: https://doi.org/10.1016/j.ijhydene.2012.10.085
  17. Tarancón, A., Morata, A., Dezanneau, G., Skinner, S. J., Kilner, J. A., Estradé, S. et. al. (2007). GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 174 (1), 255–263. doi: https://doi.org/10.1016/j.jpowsour.2007.08.077
  18. Chang, A., Skinner, S., Kilner, J. (2006). Electrical properties of GdBaCo2O5+x for ITSOFC applications. Solid State Ionics, 177 (19-25), 2009–2011. doi: https://doi.org/10.1016/j.ssi.2006.05.047
  19. Gu, H., Chen, H., Gao, L., Zheng, Y., Zhu, X., Guo, L. (2009). Oxygen reduction mechanism of NdBaCo2O5+δ cathode for intermediate-temperature solid oxide fuel cells under cathodic polarization. International Journal of Hydrogen Energy, 34 (5), 2416–2420. doi: https://doi.org/10.1016/j.ijhydene.2009.01.003
  20. Kong, X., Ding, X. (2011). Novel layered perovskite SmBaCu2O5+δ as a potential cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 36 (24), 15715–15721. doi: https://doi.org/10.1016/j.ijhydene.2011.09.035
  21. Kim, J. H., Kim, Y., Connor, P. A., Irvine, J. T. S., Bae, J., Zhou, W. (2009). Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 194 (2), 704–711. doi: https://doi.org/10.1016/j.jpowsour.2009.06.024
  22. Liu, W., Yang, C., Wu, X., Gao, H., Chen, Z. (2011). Oxygen relaxation and phase transition in GdBaCo2O5+δ oxide. Solid State Ionics, 192 (1), 245–247. doi: https://doi.org/10.1016/j.ssi.2010.04.028
  23. Kim, J.-H., Mogni, L., Prado, F., Caneiro, A., Alonso, J. A., Manthiram, A. (2009). High Temperature Crystal Chemistry and Oxygen Permeation Properties of the Mixed Ionic–Electronic Conductors LnBaCo2O5+δ (Ln = Lanthanide) . Journal of The Electrochemical Society, 156 (12), B1376. doi: https://doi.org/10.1149/1.3231501
  24. Subardi, A., Chen, C.-C., Cheng, M.-H., Chang, W.-K., Fu, Y.-P. (2016). Electrical, thermal and electrochemical properties of SmBa1−xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 204, 118–127. doi: https://doi.org/10.1016/j.electacta.2016.04.069
  25. Lü, S., Long, G., Meng, X., Ji, Y., Lü, B., Zhao, H. (2012). PrBa0.5Sr0.5Co2O5+x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 37 (7), 5914–5919. doi: https://doi.org/10.1016/j.ijhydene.2011.12.134
  26. Fu, Y.-P., Wen, S.-B., Lu, C.-H. (2007). Preparation and Characterization of Samaria-Doped Ceria Electrolyte Materials for Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 91 (1), 127–131. doi: https://doi.org/10.1111/j.1551-2916.2007.01923.x
  27. Kuhn, M., Kim, J. J., Bishop, S. R., Tuller, H. L. (2013). Oxygen Nonstoichiometry and Defect Chemistry of Perovskite-Structured BaxSr1–xTi1–yFeyO3–y/2+δ Solid Solutions. Chemistry of Materials, 25 (15), 2970–2975. doi: https://doi.org/10.1021/cm400546z
  28. Fu, Y.-P., Ouyang, J., Li, C.-H., Hu, S.-H. (2013). Chemical bulk diffusion coefficient of Sm0.5Sr0.5CoO3−δ cathode for solid oxide fuel cells. Journal of Power Sources, 240, 168–177. doi: https://doi.org/10.1016/j.jpowsour.2013.03.138
  29. Aksenova, T. V., Gavrilova, L. Y., Yaremchenko, A. A., Cherepanov, V. A., Kharton, V. V. (2010). Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo2O5+δ and SmBaCo2O5+δ. Materials Research Bulletin, 45 (9), 1288–1292. doi: https://doi.org/10.1016/j.materresbull.2010.05.004
  30. Zhang, K., Ge, L., Ran, R., Shao, Z., Liu, S. (2008). Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 56 (17), 4876–4889. doi: https://doi.org/10.1016/j.actamat.2008.06.004
  31. Kim, J., Choi, S., Park, S., Kim, C., Shin, J., Kim, G. (2013). Effect of Mn on the electrochemical properties of a layered perovskite NdBa0.5Sr0.5Co2−xMnxO5+δ (x=0, 0.25, and 0.5) for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 112, 712–718. doi: https://doi.org/10.1016/j.electacta.2013.09.014
  32. Subardi, A., Fu, Y.-P. (2017). Electrochemical and thermal properties of SmBa0.5Sr0.5Co2O5+δ cathode impregnated with Ce0.8Sm0.2O1.9 nanoparticles for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 42 (38), 24338–24346. doi: https://doi.org/10.1016/j.ijhydene.2017.08.010
  33. West, M., Manthiram, A. (2013). Layered LnBa1−xSrxCoCuO5+δ (Ln = Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 38 (8), 3364–3372. doi: https://doi.org/10.1016/j.ijhydene.2012.12.133
  34. Choi, M.-B., Lee, K.-T., Yoon, H.-S., Jeon, S.-Y., Wachsman, E. D., Song, S.-J. (2012). Electrochemical properties of ceria-based intermediate temperature solid oxide fuel cell using microwave heat-treated La0.1Sr0.9Co0.8Fe0.2O3−δ as a cathode. Journal of Power Sources, 220, 377–382. doi: https://doi.org/10.1016/j.jpowsour.2012.07.122
  35. Jun, A., Shin, J., Kim, G. (2013). High redox and performance stability of layered SmBa0.5Sr0.5Co1.5Cu0.5O5+δ perovskite cathodes for intermediate-temperature solid oxide fuel cells. Physical Chemistry Chemical Physics, 15 (45), 19906. doi: https://doi.org/10.1039/c3cp53883d
  36. Kostogloudis, G., Vasilakos, N., Ftikos, Ch. (1998). Crystal structure, thermal and electrical properties of Pr1−xSrxCoO3−δ (x=0, 0.15, 0.3, 0.4, 0.5) perovskite oxides. Solid State Ionics, 106 (3-4), 207–218. doi: https://doi.org/10.1016/s0167-2738(97)00506-7
  37. Meuffels, P. (2007). Propane gas sensing with high-density SrTi0.6Fe0.4O(3−δ) ceramics evaluated by thermogravimetric analysis. Journal of the European Ceramic Society, 27 (1), 285–290. doi: https://doi.org/10.1016/j.jeurceramsoc.2006.05.078
  38. Lia, S., Jin, W., Xu, N., Shi, J. (2001). Mechanical strength, and oxygen and electronic transport properties of SrCo0.4Fe0.6O3−δ-YSZ membranes. Journal of Membrane Science, 186 (2), 195–204. doi: https://doi.org/10.1016/s0376-7388(00)00681-5
  39. Kim, G., Wang, S., Jacobson, A. J., Reimus, L., Brodersen, P., & Mims, C. A. (2007). Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry, 17 (24), 2500. doi: https://doi.org/10.1039/b618345j
  40. Meng, F., Xia, T., Wang, J., Shi, Z., Lian, J., Zhao, H. et. al. (2014). Evaluation of layered perovskites YBa1−xSrxCo2O5+δ as cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 39 (9), 4531–4543. doi: https://doi.org/10.1016/j.ijhydene.2014.01.008
  41. Baek, S.-W., Kim, J. H., Bae, J. (2008). Characteristics of ABO3 and A2BO4 (ASm, Sr; BCo, Fe, Ni) samarium oxide system as cathode materials for intermediate temperature-operating solid oxide fuel cell. Solid State Ionics, 179 (27-32), 1570–1574. doi: https://doi.org/10.1016/j.ssi.2007.12.010
  42. Nam, J. H., Jeon, D. H. (2006). A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta, 51 (17), 3446–3460. doi: https://doi.org/10.1016/j.electacta.2005.09.041
  43. Andersson, M., Yuan, J., Sundén, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy, 87 (5), 1461–1476. doi: https://doi.org/10.1016/j.apenergy.2009.11.013

##submission.downloads##

Опубліковано

2021-04-30

Як цитувати

Subardi, A., Susanto, I. ., Kartikasari, R., Tugino, T., Kuntara, H., Wijaya, A. E. ., Purnomo, M. J., Indra, A., Fahmi, H., & Fu, Y.-P. (2021). Аналіз оксиду подвійного перовскіту SmBa0.5Sr0.5Co2O5+δ для твердооксидних паливних елементів, що працюють в діапазоні проміжних температур. Eastern-European Journal of Enterprise Technologies, 2(12 (110), 6–14. https://doi.org/10.15587/1729-4061.2021.226342

Номер

Розділ

Матеріалознавство