Комплексна методика оцінювання напружено-деформованого стану сталезалізобетонних мостів при дії змінних температур навколишнього середовища
DOI:
https://doi.org/10.15587/1729-4061.2021.228960Ключові слова:
автодорожний міст, сталезалізобетонна балка, температурні поля, температурні напруження, температура навколишнього середовищаАнотація
Проведено натурні експериментальні вимірювання розподілу температури на поверхнях сталезалізобетонних балок мостів при дії додатних та від’ємних температур навколишнього середовища. Встановлено, що температура розподіляється нерівномірно у вертикальному напрямі сталезалізобетонної балки моста.
Встановлено, що вищі значення температури має металева балка. Максимальна зафіксована різниця температур між металевою балкою та залізобетонною плитою при додатних температурах навколишнього середовища склала +9,0 °С, а мінімальна різниця температур склала –2,1 °С.
Удосконалено математичні моделі розрахунку температурного поля та термонапруженого стану сталезалізобетонних балок мостів при дії змінних кліматичних температурних перепадів навколишнього середовища із врахуванням нерівномірного розподілу температури сталезалізобетонною балкою моста. Встановлено, що у якості розрахункових схем визначення термопружного стану сталезалізобетонних мостів можна розглядати одновимірну задачу, або застосовувати тривимірні розрахункові схеми задачі.
Проведено визначення температурного поля та напруженого стану сталезалізобетонних балок мостів. Встановлено, що максимальні напруження виникають у місці об’єднання металевої балки із залізобетонною плитою. Величина цих напружень складає 73,4 МПа при додатних температурах і 69,3 МПа при від’ємних температурах навколишнього середовища.
Величина напружень становить до 35 % від допустимих значень напружень. Загальний напружено-деформований стан сталезалізобетонних балок моста слід оцінювати при сумісній дії температурних кліматичних впливів і навантажень від рухомих одиниць транспортних засобів
Посилання
- Balabuh, Ya. (2010). Efficiency of steel-reinforced road bridges. Dorogi і mosti, 12, 16–23. Available at: http://dorogimosti.org.ua/ua/efektivnisty-stalezalizobetonnih-avtodoroghnih-mostiv
- Kovalchuk, V. V. (2012). Stan ta problemy zabezpechennia dovhovichnosti prohonovykh budov mostiv. Zbirnyk naukovykh prats DonIZT, 32, 226–235.
- Koval, P. M., Balabukh, Ya. A. (2012). Problemy zabezpechennia dovhovichnosti stalebetonnykh mostiv. Mekhanika i fizyka ruinuvannia budivelnykh materialiv ta konstruktsiy, 9, 426–443.
- Kovalchuk, V., Markul, R., Bal, O., Мilyanych, A., Pentsak, A., Parneta, B., Gajda, A. (2017). The study of strength of corrugated metal structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 2 (7 (86)), 18–25. doi: https://doi.org/10.15587/1729-4061.2017.96549
- Kovalchuk, V. (2014). Study of temperature field and stress state of metal convoluted pipes. Resursoekonomni materialy, konstruktsii, budivli ta sporudy, 29, 186–192. Available at: http://nbuv.gov.ua/UJRN/rmkbs_2014_29_29
- Beben, D. (2017). Experimental Testing of Soil-Steel Railway Bridge Under Normal Train Loads. Experimental Vibration Analysis for Civil Structures, 805–815. doi: https://doi.org/10.1007/978-3-319-67443-8_71
- Li, D., Maes, M. A., Dilger, W. H. (2004). Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge. Canadian Journal of Civil Engineering, 31 (5), 813–825. doi: https://doi.org/10.1139/l04-041
- Pisani, M. A. (2004). Non-linear strain distributions due to temperature effects in compact cross-sections. Engineering Structures, 26 (10), 1349–1363. doi: https://doi.org/10.1016/j.engstruct.2004.04.004
- Barr, P. J., Stanton, J. F., Eberhard, M. O. (2005). Effects of Temperature Variations on Precast, Prestressed Concrete Bridge Girders. Journal of Bridge Engineering, 10 (2), 186–194. doi: https://doi.org/10.1061/(asce)1084-0702(2005)10:2(186)
- AASHTO LRFD bridge design specifications (2008). Washington, DC: American Association of State Highway and Transportation Officials. Available at: https://www.worldcat.org/title/aashto-lrfd-bridge-design-specifications/oclc/317485511
- Lee, J.-H. (2010). Experimental and analytical investigations of the thermal behavior of prestressed concrete bridge girders including imperfections. Georgia Institute of Technology Atlanta, GA, 302. Available at: https://smartech.gatech.edu/handle/1853/34675
- DBN V.1.2-15:2009. Sporudy transportu. Mosty ta truby. Navantazhennia i vplyvy. K.: Minbud Ukrainy, 84. Available at: http://kbu.org.ua/assets/app/documents/dbn2/48.1.%20%D0%94%D0%91%D0%9D%20%D0%92.1.2-15~2009.%20%D0%A1%D0%BF%D0%BE%D1%80%D1%83%D0%B4%D0%B8%20%D1%82%D1%80%D0%B0%D0%BD%D1%81%D0%BF%D0%BE%D1%80%D1%82%D1%83.%20%D0%9C%D0%BE%D1%81%D1%82%D0%B8%20%D1%82%D0%B0%20%D1%82%D1%80.pdf
- Luchko, Y. Y., Sulym, H. T., Kyrian, V. I. (2004). Mekhanika ruinuvannia mostovykh konstruktsii ta metody prohnozuvannia yikh zalyshkovoi dovhovichnosti. Lviv: Kameniar, 885. Available at: http://94.158.152.98/opac/index.php?url=/notices/index/IdNotice:85921/Source:default.
- De Backer, H., Outtier, A., Van Bogaert, P. (2009). Numerical and experimental assessment of thermal stresses in steel box girders. Conference: Nordic Steel Construction Conference, 11th, Proceedings, 65–72. Available at: https://www.researchgate.net/publication/259004379_Numerical_and_experimental_assessment_of_thermal_stresses_in_steel_box_girders
- Balmes, E., Corus, M., Siegert, D. (2006). Modeling thermal effects on bridge dynamic responses. Available at: https://www.researchgate.net/publication/228758158
- Zahabizadeh, B., Edalat-Behbahani, A., Granja, J., Gomes, J. G., Faria, R., Azenha, M. (2019). A new test setup for measuring early age coefficient of thermal expansion of concrete. Cement and Concrete Composites, 98, 14–28. doi: https://doi.org/10.1016/j.cemconcomp.2019.01.014
- Dilger, W. H., Ghali, A., Chan, M., Cheung, M. S., Maes, M. A. (1983). Temperature Stresses in Composite Box Girder Bridges. Journal of Structural Engineering, 109 (6), 1460–1478. doi: https://doi.org/10.1061/(asce)0733-9445(1983)109:6(1460)
- Luchko, J., Hnativ, Yu., Kovalchuk, V. (2013). Temperature field and stressed state of composite bridge span investigation. Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu, 2, 29–38. Available at: http://eadnurt.diit.edu.ua/jspui/handle/123456789/9759.
- Gera, B., Kovalchuk, V. (2019). A study of the effects of climatic temperature changes on the corrugated structure. Eastern-European Journal of Enterprise Technologies, 3 (7 (99)), 26–35. doi: https://doi.org/10.15587/1729-4061.2019.168260
- Kovalchuk, V., Hnativ, Y., Luchko, J., Sysyn, M. (2020). Study of the temperature field and the thermo-elastic state of the multilayer soil-steel structure. Roads and Bridges - Drogi i Mosty, 19 (1), 65–78. doi: https://doi.org/10.7409/rabdim.020.004
- Luchko, Y. Y., Kovalchuk, V. V. (2012). Vymiriuvannia napruzheno-deformovanoho stanu konstruktsiy mostiv pry zminnykh temperaturakh i navantazhenniakh. Lviv: Kameniar, 235.
- Rudakov, K. M. (2009). Vstup u UGS Femap 9.3 (for Windows NT). Heometrychne ta skinchenno-elementne modeliuvannia konstruktsiy. Kyiv: NTUU «KPI», 282. Available at: http://mmi-dmm.kpi.ua/images/pdf/personnel/RUDAKOV/publicacii/Femap93_PDF/Femap93.htm
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Виталий Владимирович Ковальчук, Артур Николаевич Онищенко, Александр Владимирович Федоренко, Николай Михаилович Габрель, Богдан Зиновьевич Парнета, Олег Михайлович Возняк, Руслан Владимирович Маркуль, Марьяна Богдановна Парнета, Роман Тарасович Рыбак

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.