Determining the effect of treating table beet with biopreparations before storage on its preservation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.229084

Keywords:

table beet, storage, biopreparations, preservation, components of chemical composition, damage by microorganisms

Abstract

The study reported here aimed to explore the preservation of table beet depending on its treatment with bio preparations before storage in order to prolong its shelf life.

The effect of aqueous solutions of the biopreparations Phytosporine and Gamair in concentrations of 0.2 %, 0.3 %, and 0.5 % on the intensity of quality loss by beetroots during storage was investigated.

It was found that the treatment with the bio preparations reduced the total weight loss by the roots Zepo F1 by 7.9‒10.3 %, Carillon F1 ‒ by 6.8‒7.7 %. The daily weight loss by untreated beetroots due to the damage induced by microorganisms ranged from 0.08±0.01 % at a storage temperature of 1±1 °С to 0.1±0.01 % at a storage temperature of 15±1 °С, respectively.

The sugar content in beetroots non-treated with bio preparations decreases during storage by 21.6–25.0 %. Treating beetroots with a 0.3 % solution of Phytosporine reduces sugar losses over 150 days at a storage temperature of 1±1 °С by 3.7–6.5 %; with a 0.3 % Gamair solution ‒ by 8.8–12.8 %.

The loss of vitamin C ranged from 39.4 % to 41.2 % relative to the initial content in the control. The treatment with Phytosporine reduced the loss of vitamin C to 17.4 % in Zepo F1, and 25.4 % ‒ in Carillon F1; with Gamair ‒ to 28.0 and 29.3 %, respectively. At a storage temperature of 15±1 °С, the content of vitamin C decreased by 1.5‒1.8 times over 90 days.

It was established that the preservation of table beet depends on the shape of a root. At a storage temperature of 1±1 °С, the weight loss by cylindrical beetroots is 5.1 %, rounded shape ‒ 5.4 %. The yield of marketable products ranges from 74.2 to 82.9 % for the Carillon F1 hybrid, and for Zepo F1 of a round shape ‒ 73.3–80.5 % depending on the storage temperature.

The technique of treating table beet before storage with bio preparations allows using Phytosporine and Gamair for post-harvest treatment of vegetable raw materials. When devising new, low-cost, environmentally friendly, and affordable technologies, this is an important tool.

Author Biographies

Ludmila Pusik, Kharkiv Petro Vasylenko National Technical University of Agriculture

Doctor of Agricultural Sciences, Professor

Department of Optimization of Technological Systems named after T. Yevsiukov

Vlаdimir Pusik, Kharkiv Petro Vasylenko National Technical University of Agriculture

Doctor of Agricultural Sciences, Professor, Head of Department

Department of Agrotechnology and Ecology

Veronika Bondarenko, Kharkiv Petro Vasylenko National Technical University of Agriculture

PhD, Associate Professor

Department of Agrotechnology and Ecology

Ludmila Gaevaya, Kharkiv National Agrarian University named after V. V. Dokuchaev

PhD, Lecturer

Department of Fruit and Vegetable And Storage

Nina Lyubymova, Kharkiv Petro Vasylenko National Technical University of Agriculture

Doctor of Technical Sciences, Professor

Department of Agrotechnology and Ecology

Galyna Sukhova, Kharkiv National Agrarian University named after V. V. Dokuchaev

PhD, Associate Professor

Department of Crop Production

Nataliya Didukh, Kharkiv National Agrarian University named after V. V. Dokuchaev

PhD, Lecturer

Department of Fruit and Vegetable and Storage

Galina Slobodyanyk, Uman National University of Horticulture

PhD, Associate Professor

Department of Vegetable Growing

References

  1. Koltunov, V. A. (2007). Upravlinnia yakistiu ovochevykh koreneplodiv. Kyiv: KNTEU, 252.
  2. Aleshin, V. N., Kupin, G. A., Pershakova, T. V., Kabalina, D. V. (2017). Perspektivy primeneniya biopreparatov pri hranenii fruktov. Sbornik materialov kongressa «Nauka, pitanie i zdorov'e». Minsk, 452–459.
  3. Pershakova, T. V., Lisovoy, V. V., Kupin, G. A., Panasenko, E. Y., Victorova, E. P. (2016). Ways to ensure consistent quality of vegetable raw materials in the process of using biopreparations in storing. Nauchniy zhurnal KubGAU, 117 (03). Available at: http://ej.kubagro.ru/2016/03/pdf/33.pdf
  4. Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R., Kariman, K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117, 147–157. doi: https://doi.org/10.1016/j.biocontrol.2017.11.006
  5. Pusik, L., Pusik, V., Postnova, O., Safronska, I., Chervonyi, V., Mohutova, V., Kaluzhnij, A. (2020). Preservation of winter garlic depending on the elements of postharvest treatment. Eastern-European Journal of Enterprise Technologies, 2 (11 (104)), 24–32. doi: https://doi.org/10.15587/1729-4061.2020.200842
  6. Leverentz, B., Janisiewicz, W. J., Conway, W. S., Saftner, R. A., Fuchs, Y., Sams, C. E., Camp, M. J. (2000). Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of “Gala” apples. Postharvest Biology and Technology, 21 (1), 87–94. doi: https://doi.org/10.1016/s0925-5214(00)00167-8
  7. Saligkarias, I. D., Gravanis, F. T., Epton, H. A. S. (2002). Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: I. in vivo studies. Biological Control, 25 (2), 143–150. doi: https://doi.org/10.1016/s1049-9644(02)00051-8
  8. Al-Mughrabi, K. I. (2010). Biological control of Fusarium dry rot and other potato tuber diseases using Pseudomonas fluorescens and Enterobacter cloacae. Biological Control, 53 (3), 280–284. doi: https://doi.org/10.1016/j.biocontrol.2010.01.010
  9. Eshel, D., Regev, R., Orenstein, J., Droby, S., Gan-Mor, S. (2009). Combining physical, chemical and biological methods for synergistic control of postharvest diseases: A case study of Black Root Rot of carrot. Postharvest Biology and Technology, 54 (1), 48–52. doi: https://doi.org/10.1016/j.postharvbio.2009.04.011
  10. Alegre, I., Viñas, I., Usall, J., Teixidó, N., Figge, M. J., Abadias, M. (2013). Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiology, 34 (2), 390–399. doi: https://doi.org/10.1016/j.fm.2013.01.013
  11. Plaza, L., Altisent, R., Alegre, I., Viñas, I., Abadias, M. (2016). Changes in the quality and antioxidant properties of fresh-cut melon treated with the biopreservative culture Pseudomonas graminis CPA-7 during refrigerated storage. Postharvest Biology and Technology, 111, 25–30. doi: https://doi.org/10.1016/j.postharvbio.2015.07.023
  12. Shi, J.-F., Sun, C.-Q. (2017). Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology, 48 (4), 706–714. doi: https://doi.org/10.1016/j.bjm.2017.03.002
  13. Sadfi-Zouaoui, N., Essghaier, B., Hajlaoui, M. R., Fardeau, M. L., Cayaol, J. L., Ollivier, B., Boudabous, A. (2008). Ability of Moderately Halophilic Bacteria to Control Grey Mould Disease on Tomato Fruits. Journal of Phytopathology, 156 (1), 42–52. doi: https://doi.org/10.1111/j.1439-0434.2007.01329.x
  14. Sadfi, N., Cherif, M., Hajlaoui, M. R., Boudabbous, A. (2002). Biological Control of the Potato Tubers Dry Rot Caused by Fusarium roseum var. sambucinum under Greenhouse, Field and Storage Conditions using Bacillus spp. Isolates. Journal of Phytopathology, 150 (11-12), 640–648. doi: https://doi.org/10.1046/j.1439-0434.2002.00811.x
  15. Nir, B. J., Ehlajkhu, M. (1999). Pat. No. 2262230S2 RF. Method for potato treatment during storage process. No. 2001102049/13; declareted: 22.07.1999; published: 20.10.2005, Bul. No. 29. Available at: https://patentimages.storage.googleapis.com/78/aa/96/5ba8e8a13d60fe/RU2262230C2.pdf
  16. Esitken, A., Yildiz, H. E., Ercisli, S., Figen Donmez, M., Turan, M., Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae, 124 (1), 62–66. doi: https://doi.org/10.1016/j.scienta.2009.12.012
  17. Haggag, W. M., Abo El Soud, M. (2012). Production and Optimization of Pseudomonas fluorescens Biomass and Metabolites for Biocontrol of Strawberry Grey Mould. American Journal of Plant Sciences, 03 (07), 836–845. doi: https://doi.org/10.4236/ajps.2012.37101
  18. DSTU 4954:2008. Fruits and vegetables products. Methods for determination of sugars (2008). Kyiv, 22.
  19. Chupahina, G. N. (2000). Kolichestvennoe opredelenie askorbinovoy, degidroaskorbinovoy i diketoguonovoy kislot v rastitel'nyh tkanyah. Fiziologicheskie i biohimicheskie metody analiza rasteniy: praktikum. Kaliningrad, 4–7. Available at: http://www.agriculture.uz/filesarchive/chupahin.pdf
  20. Puzik, L. M., Hordienko, I. M. (2011). Tekhnolohiya zberihannia fruktiv, ovochiv ta vynohradu. Kharkiv: Maidan, 330.
  21. Pusik, L., Pusik, V., Lyubymova, N., Bondarenko, V., Gaevaya, L. (2018). Research into preservation of broccoli depending on the treatment with antimicrobic preparations before storage. Eastern-European Journal of Enterprise Technologies, 4 (11 (94)), 20–28. doi: https://doi.org/10.15587/1729-4061.2018.140064
  22. Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Król, M., Varzakas, T. (2020). Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms, 8 (6), 952. doi: https://doi.org/10.3390/microorganisms8060952
  23. Pawlowska, A. M., Zannini, E., Coffey, A., Arendt, E. K. (2012). “Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. Advances in Food and Nutrition Research, 66, 217–238. doi: https://doi.org/10.1016/b978-0-12-394597-6.00005-7
  24. Sharma, T. R., Chauhan, R. S., Singh, B. M., Paul, R., Sagar, V., Rathour, R. (2002). RAPD and Pathotype Analyses of Magnaporthe grisea Populations from the north-western Himalayan Region of India. Journal of Phytopathology, 150 (11-12), 649–656. doi: https://doi.org/10.1046/j.1439-0434.2002.00812.x
  25. Zhang, D., Spadaro, D., Garibaldi, A., Gullino, M. L. (2010). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biological Control, 54 (3), 172–180. doi: https://doi.org/10.1016/j.biocontrol.2010.05.003
  26. Datsenko, S. M. (2015). The treatment effect of biological preparations on yield and preservation of root crops of beet. Visnyk KhNAU. Seriya «Roslynnytstvo, selektsiya i nasinnytstvo, plodoovochivnytstvo i zberihannia», 2, 175–179. Available at: http://visnykagro.knau.kharkov.ua/wp-content/uploads/2020/01/2_2015.pdf
  27. Borodai, V. V., Skaletska, L. F., Balvas, K. M., Tkalenko, H. M., Koltunov, V. A. (2013). Zminy khimichnoho skladu ta vtraty masy bulb kartopli v period zberihannia pid chas zastosuvannia biopreparativ. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Ser.: Ahronomiia, 183 (1), 77–82. Available at: http://nbuv.gov.ua/UJRN/nvnau_agr_2013_183(1)__16
  28. Shepel, S. V., Stryzhkov, O. H. (2010). Ekonomichna otsinka vykorystannia mikrobiolohichnykh preparativ pry zberihanni roslynnoi produktsiyi. Visnyk ahrarnoi nauky, 4, 61–64. Available at: http://nbuv.gov.ua/UJRN/vaan_2010_4_18

Downloads

Published

2021-04-30

How to Cite

Pusik, L., Pusik, V., Bondarenko, V., Gaevaya, L., Lyubymova, N., Sukhova, G., Didukh, N., & Slobodyanyk, G. (2021). Determining the effect of treating table beet with biopreparations before storage on its preservation. Eastern-European Journal of Enterprise Technologies, 2(11 (110), 23–32. https://doi.org/10.15587/1729-4061.2021.229084

Issue

Section

Technology and Equipment of Food Production