Development of dairy products technology with application low-etherificated pectin products

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.233821

Keywords:

beet concentrate, cow's milk, pectin-containing yogurts, pectin, pectin products

Abstract

The issue relatedto removing heavy and radioactive metals from the body is relevant all over the world. Chemical preparations for removing heavy metals and radionuclides are not effective enough, causing the depletion of trace elements in the body. It is effective to use substances contained in natural foods that do not cause side effects and provide for protective action. These substances include pectin, safe natural detoxifying agents that remove toxins from the body.

When processing fruits and vegetables, pectin remains in the pomace thatis valuable for obtaining competitive products. There are techniques to produce pectin from plant raw materials by using enzymes that are harmless to health. The use of pectin concentrates in combination with dairy raw materials makes it possible to obtain biologically complete products with functional properties.

A concentrate containing 5 %of pectin was used in the study reported in this paper.

Raw materials were studied in terms of important indicators of their quality and safety, to determine their suitability and further use in yogurt technology. The formulations of yogurts have been devisedinvolving the application of low-esterified beet pectin concentrate, whose degree of etherification is 34.7 % and the complex-forming capacity is 290 mg Рb2+/g. It has been established that the most optimal sample contains pectin in the amount of 0.5 % per milk mass. To preserve the vitamin composition, the yogurts were prepared under the classic pasteurization regime of 72 to 75 °C with a 20 s aging.

In the future, the industrial implementation of the devised technologies and formulations of pectin-containing dairy products could provide the population with products that have functional properties and contribute to the prevention of socially significant diseases

Author Biographies

Zhanar Nabiyeva, Almaty Technological University

PhD, Director of Research Institute

Research Institute of Food Safety

Nurshash Zhexenbay, Almaty Technological University; Asfendiyarov Kazakh National Medical University

PhD, Associate Professor

Department of Food Technology

Lecturer

Department of Pharmaceutical Technology

Galiya Iskakova, Almaty Technological University

Doctor of Technical Sciences, Professor

Department of Technology of Bakery Products and Processing Industries

Maigul Kizatova, Asfendiyarov Kazakh National Medical University

Doctor of Technical Sciences, Professor

Department of Pharmaceutical Technology

Shynar Akhmetsadykova , Al-Farabi Kazakh National University; Scientific and production enterprise Antigen Co. Ltd.; LLP Kazakh Scientific Research Institute of Livestock and Fodder Production

PhD, Senior Professor

Department of Biotechnology

Head of Laboratory

Probiotics Biotechnology Laboratory

Head of Department

Department of Camels Breeding

References

  1. Kizatova, M. Zh., Alibayeva, B. N., Azimova, S. T., Iskakova, G. K., Nabiyeva, Z. S., Uvakasova, G. T. (2019). The Impact of the Ecological Situation on Blood Parameters of Pigeons. International Journal of Psychosocial Rehabilitation, 23 (1), 485–492. doi: https://doi.org/10.37200/ijpr/v23i1/pr190262
  2. Nurmadieva, G. T., Zhetpisbaev, B. A. (2018). Influence of the ecosystem on human health in the industrial developed regions of Kazakhstan. A literature review. Nauka i Zdravoohranenie, 20 (4), 107–132. Available at: https://cyberleninka.ru/article/n/vliyanie-ekosistemy-na-zdorovie-cheloveka-v-promyshlenno-razvityh-regionah-kazahstana-obzor-literatury
  3. Kizatova, M. Z., Azimova, S. T., Iskakova, G. K., Makhmudov, F. A., Bekturganova, A. A. (2020). The introduction of pectin-containing foods for the competitiveness of enterprises. Entrepreneurship and Sustainability Issues, 7 (4), 3191–3199. doi: https://doi.org/10.9770/jesi.2020.7.4(40)
  4. Kizatova, M. Zh., Iskakova, G. K., Nabieva, Zh. S., Azimova, S. T., Ustenova, G. O., Kozhanova, K. K. (2020). Pektiny: osnovnye svoystva, tekhnologii, primenenie. Almaty: IP «Miras», 265.
  5. Arhipov, A. N. (2015). Primenenie strukturoobrazovateley v proizvodstve molochnyh produktov. Moscow: OOO «KPF Milorada», 156.
  6. Zobkova, Z. S., Fursova, T. P. (2005). Osobennosti tekhnologii yogurta pit'evogo tipa. Molochnaya promyshlennost', 11, 32–34.
  7. Kenijz, N. V., Varivoda, A., Bychkova, T. S., S’yanov, D. A., Nikolaev, I. A. (2020). The use of vegetable proteins in summer sausage production. IOP Conference Series: Earth and Environmental Science, 613, 012051. doi: https://doi.org/10.1088/1755-1315/613/1/012051
  8. Khasina, E. I., Kolenchenko, E. A., Sgrebneva, M. N., Kovalev, V. V., Khotimchenko, Yu. S. (2003). Antioxidant Activities of a Low Etherified Pectin from the Seagrass Zostera marina. Russian Journal of Marine Biology, 29, 259–261. doi: https://doi.org/10.1023/A:1025493128327
  9. Eliaz, I., Weil, E., Schwarzbach, J., Wilk, B. (2019). Modified citrus pectin / alginate dietary supplement increased fecal excretion of uranium: A family. Alternative Therapies in Health and Medicine, 25 (4), 20–24.
  10. Eliaz, I., Raz, A. (2019). Pleiotropic Effects of Modified Citrus Pectin. Nutrients, 11 (11), 2619. doi: https://doi.org/10.3390/nu11112619
  11. Wikiera, A., Grabacka, M., Byczyński, Ł., Stodolak, B., Mika, M. (2021). Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity. Molecules, 26 (5), 1434. doi: https://doi.org/10.3390/molecules26051434
  12. Chauhan, S. S., Shetty, A. B., Hatami, E., Chowdhury, P., Yallapu, M. M. (2020). Pectin-Tannic Acid Nano-Complexes Promote the Delivery and Bioactivity of Drugs in Pancreatic Cancer Cells. Pharmaceutics, 12 (3), 285. doi: https://doi.org/10.3390/pharmaceutics12030285
  13. Zhexenbay, N., Akhmetsadykova, S., Nabiyeva, Zh., Kizatova, M., Iskakova, G. (2020). Using pectin as heavy metals detoxification agent to reduce environmental contamination and health risks. Procedia Environmental Science, Engineering and Management, 7 (4), 551–562.
  14. Zhang, W., Xu, P., Zhang, H. (2015). Pectin in cancer therapy: A review. Trends in Food Science & Technology, 44 (2), 258–271. doi: https://doi.org/10.1016/j.tifs.2015.04.001
  15. Smolnikova, F., Moldabayeva, Z., Kenijz, N., Burakovskaya, N., Shadrin, M., Bykov, V. et. al. (2019). Effect of food additives on physical and chemical properties of dietary salt free bread. International Journal of Recent Technology and Engineering, 8 (3), 5939–5941. doi: https://doi.org/10.35940/ijrte.c6174.098319
  16. Limareva, N., Donchenko, L., Malaknov, V., Semenova, E. (2019). Functional beverages containing pectin from different raw material. IOP Conference Series: Earth and Environmental Science, 337, 012013. doi: https://doi.org/10.1088/1755-1315/337/1/012013
  17. Gerschenson, L. N., Fissore, E. N., Rojas, A. M., Idrovo Encalada, A. M., Zukowski, E. F., Higuera Coelho, R. A. (2021). Pectins obtained by ultrasound from agroindustrial by-products. Food Hydrocolloids, 118, 106799. doi: https://doi.org/10.1016/j.foodhyd.2021.106799
  18. Magomedov, M. G. (2015). Proizvodstvo plodoovoschnyh produktov zdorovogo pitaniya. Sankt-Peterburg: Izdatel'stvo «Lan'», 560.
  19. Artemova, E. N., Simakova, I. V., Tsareva, N. I., Zhubreva, T. V., Rodionova, N. S., Popov, E. S. (2021). Modeling of the technological process of dairy desserts with pectin-containing ingredients. IOP Conference Series: Earth and Environmental Science, 640 (3), 032029. doi: https://doi.org/10.1088/1755-1315/640/3/032029
  20. Normah, I., Nur Syuhadah, M. Z. (2019). Comparative study on the physicochemical characteristics of chicken sausage incorporated with sutchi catfish (Pangasius hypophthalmus) gelatin, carrageenan and pectin. Food Research, 3 (5), 477–483. doi: https://doi.org/10.26656/fr.2017.3(5).025
  21. Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Fernández-Prior, Á., Fernández-Bolaños, J. (2019). Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Science, 148, 213–218. doi: https://doi.org/10.1016/j.meatsci.2018.07.003
  22. Nesterenko, A. A. (2014). The impact of starter cultures on functional and technological properties of model minced meat. Austrian Journal of Technical and Natural Sciences, 7-8, 77–80. Available at: https://cyberleninka.ru/article/n/the-impact-of-starter-cultures-on-functional-and-technological-properties-of-model-minced-meat
  23. Kenijz, N. V., Nesterenko, A. A. (2015). Investigation of the functional role of pectin in bakery technology. World science, 1 (2 (2)), 28–32.
  24. Donchenko, L. V., Sokol, N. V., Sanzharovskaya, N. S., Khrapko, O. P., Mikhaylova, T. A. (2020). Functional role of pectin in the bakery technology. IOP Conference Series: Earth and Environmental Science, 488, 012010. doi: https://doi.org/10.1088/1755-1315/488/1/012010
  25. Noviy spravochnik himika i tekhnologa. Syr'e i produkty promyshlennosti organicheskih i neorganicheskih veschestv. Chast' II (2005). Sankt-Peterburg: «Mir i Sem'ya», 1142.
  26. Donchenko, L. V., Firsov, G. G. (2006). Tekhnologiya pektina i pektinoproduktov. Krasnodar, 276.
  27. Salishcheva, O., Donya, D. (2013). A study of the complexing and gelling abilities of pectic substances. Foods and Raw Materials, 1 (2), 76–84. doi: https://doi.org/10.12737/2172
  28. Azimova, S. T., Kizatova, M. Z., Akhmetova, S. O., Donchenko, L. V., Admayeva, A. M. (2017). Towards food security through application of novel scientific findings. Journal of Security and Sustainability Issues, 6 (4), 719–728. doi: https://doi.org/10.9770/jssi.2017.6.4(16)
  29. Nikitchyna, T. I., Bezusov, A. T. (2014). The effect of calcium salts nature on the techno-logical properties of biochemically modified pectines. Journal of Food Science and Technology, 8 (6), 18–22. doi: https://doi.org/10.15673/2073-8684.29/2014.33525
  30. Fallourd, M. J., Viscione, L. (2009). Ingredient selection for stabilisation and texture optimisation of functional beverages and the inclusion of dietary fibre. Functional and Speciality Beverage Technology, 3–38. doi: https://doi.org/10.1533/9781845695569.1.3
  31. GOST ISO 12081-2013. Milk. Determination of calcium content. Titrimetric method (2018). Moscow: Standartinform, 4.
  32. Kukharenko, A., Brito, A., Yashin, Y. I., Yashin, A. Y., Kuznetsov, R. M., Markin, P. A. et. al. (2019). Total antioxidant capacity of edible plants commonly found in East Asia and the Middle East determined by an amperometric method. Journal of Food Measurement and Characterization, 14 (2), 809–817. doi: https://doi.org/10.1007/s11694-019-00329-8
  33. Murzahmetova, M. K., Tayeva, A. M., Baimaganbetova, G. B., Nabiyeva, Zh. S., Kizatova, M. Z., Kulazhanov, K. S., Vitavskaya, A. V. (2015). Antioxidant activity of breads. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6 (3), 1020–1025. Available at: https://www.rjpbcs.com/pdf/2015_6(3)/[142].pdf
  34. GOST R 54756-2011. Milk and milk products. Determination of mass fraction of whey proteins with Kjeldahl method (2012). Moscow: Standartinform, 11.
  35. GOST STB ISO 17997-1-2012. Milk. Determination of casein-nitrogen content. Part 1. Indirect method (Reference method). Minsk: Gosstandart, 9.
  36. GOST 30178-96. Raw material and food-stuffs. Atomic absorption method for determination of toxic elements (1997). Moscow, 32.
  37. GOST R 51766-2001. Raw material and food-stuffs. Atomic absorption method for determination of arsenic (2011). Moscow: Standartinform, 10.
  38. GOST R 53183-2008. Foodstuffs. Determination of trace elements. Determination of mercury by cold-vapour atomic absorption spectrometry (CVAAS) method after pressure digestion (2011). Moscow: Standartinform.
  39. GOST 23452-2015. Milk and milk products. Methods for determination of the hlororganic pesticides residues (2016). Moscow: Standartinform, 12.
  40. GOST 32689.1-2014. Foods of plant origin. Multiresidue methods for the gas chromatographic determination of pesticide residues. Part 1. General considerations. Moscow: Standartinform, 11.
  41. GOST 33601-2015. Milk and milk products. Express method for determination of the aflatoxin M content (2019). Moscow: Standartinform.
  42. GOST 32012-2012. Milk and milk product. Methods for determination of the spores content of mesophilic anaerobic microorganisms. Moscow: Standartinform, 11.
  43. GOST 10444.15-94. Food products. Methods for determination of quantity of mesophilic aerobes and facultative anaerobes (2010). Moscow: Standartinform, 7.
  44. GOST 31747-2012. Food products. Methods for detection and quantity determination of coliforms (2013). Moscow: Standartinform, 15.
  45. GOST 33951-2016. Milk and milk products. Methods for determination of the lactic acid bacteria. Moscow: Standartinform, 10.
  46. GOST 10444.11-2013 (ISO 15214:1998). Microbiology of food and animal feeding stuffs. Methods for detection and enumeration of mesophilic lactic acid bacteria (2014). Moscow: Standartinform, 15.
  47. Firsov, G. G., Donchenko, L. V., Firsov, G. G. (2008). Teoreticheskie osnovy i eksperimental'noe modelirovanie protsessov ekstragirovaniya pektinovyh veschestv iz rastitel'noy tkani. Novye tekhnologii, 12, 36–40.
  48. GOST R 52349-2005. Foodstuffs. Functional foods. Terms and definitions (2006). Moscow: Standartinform, 9.
  49. Donchenko, L. V., Firsov, G. G. (2007). Pektin: osnovnye svoystva, proizvodstvo i primenenie. Moscow: DeLi print, 276.
  50. Zhang, J., Wolf, B. (2019). Physico-Chemical Properties of Sugar Beet Pectin-Sodium Caseinate Conjugates via Different Interaction Mechanisms. Foods, 8 (6), 192. doi: https://doi.org/10.3390/foods8060192
  51. Mesbahi, G., Jamalian, J., Farahnaky, A. (2005). A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocolloids, 19 (4), 731–738. doi: https://doi.org/10.1016/j.foodhyd.2004.08.002
  52. Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., Rimac Brnčić, S. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28–37. doi: https://doi.org/10.1016/j.tifs.2018.03.022
  53. Adiletta, G., Brachi, P., Riianova, E., Crescitelli, A., Miccio, M., Kostryukova, N. (2019). A Simplified Biorefinery Concept for the Valorization of Sugar Beet Pulp: Ecofriendly Isolation of Pectin as a Step Preceding Torrefaction. Waste and Biomass Valorization, 11 (6), 2721–2733. doi: https://doi.org/10.1007/s12649-019-00582-4
  54. Ivanova, M., Petkova, N., Todorova, M., Dobreva, V., Vlaseva, R., Denev, P. et. al. (2020). Influence of citrus and celery pectins on physicochemical and sensory characteristics of fermented dairy products. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 21 (4), 533–545.

Downloads

Published

2021-06-30

How to Cite

Nabiyeva, Z., Zhexenbay, N., Iskakova, G., Kizatova, M., & Akhmetsadykova , S. (2021). Development of dairy products technology with application low-etherificated pectin products. Eastern-European Journal of Enterprise Technologies, 3(11 (111), 17–27. https://doi.org/10.15587/1729-4061.2021.233821

Issue

Section

Technology and Equipment of Food Production