Development of dairy products technology with application low-etherificated pectin products
DOI:
https://doi.org/10.15587/1729-4061.2021.233821Keywords:
beet concentrate, cow's milk, pectin-containing yogurts, pectin, pectin productsAbstract
The issue relatedto removing heavy and radioactive metals from the body is relevant all over the world. Chemical preparations for removing heavy metals and radionuclides are not effective enough, causing the depletion of trace elements in the body. It is effective to use substances contained in natural foods that do not cause side effects and provide for protective action. These substances include pectin, safe natural detoxifying agents that remove toxins from the body.
When processing fruits and vegetables, pectin remains in the pomace thatis valuable for obtaining competitive products. There are techniques to produce pectin from plant raw materials by using enzymes that are harmless to health. The use of pectin concentrates in combination with dairy raw materials makes it possible to obtain biologically complete products with functional properties.
A concentrate containing 5 %of pectin was used in the study reported in this paper.
Raw materials were studied in terms of important indicators of their quality and safety, to determine their suitability and further use in yogurt technology. The formulations of yogurts have been devisedinvolving the application of low-esterified beet pectin concentrate, whose degree of etherification is 34.7 % and the complex-forming capacity is 290 mg Рb2+/g. It has been established that the most optimal sample contains pectin in the amount of 0.5 % per milk mass. To preserve the vitamin composition, the yogurts were prepared under the classic pasteurization regime of 72 to 75 °C with a 20 s aging.
In the future, the industrial implementation of the devised technologies and formulations of pectin-containing dairy products could provide the population with products that have functional properties and contribute to the prevention of socially significant diseases
References
- Kizatova, M. Zh., Alibayeva, B. N., Azimova, S. T., Iskakova, G. K., Nabiyeva, Z. S., Uvakasova, G. T. (2019). The Impact of the Ecological Situation on Blood Parameters of Pigeons. International Journal of Psychosocial Rehabilitation, 23 (1), 485–492. doi: https://doi.org/10.37200/ijpr/v23i1/pr190262
- Nurmadieva, G. T., Zhetpisbaev, B. A. (2018). Influence of the ecosystem on human health in the industrial developed regions of Kazakhstan. A literature review. Nauka i Zdravoohranenie, 20 (4), 107–132. Available at: https://cyberleninka.ru/article/n/vliyanie-ekosistemy-na-zdorovie-cheloveka-v-promyshlenno-razvityh-regionah-kazahstana-obzor-literatury
- Kizatova, M. Z., Azimova, S. T., Iskakova, G. K., Makhmudov, F. A., Bekturganova, A. A. (2020). The introduction of pectin-containing foods for the competitiveness of enterprises. Entrepreneurship and Sustainability Issues, 7 (4), 3191–3199. doi: https://doi.org/10.9770/jesi.2020.7.4(40)
- Kizatova, M. Zh., Iskakova, G. K., Nabieva, Zh. S., Azimova, S. T., Ustenova, G. O., Kozhanova, K. K. (2020). Pektiny: osnovnye svoystva, tekhnologii, primenenie. Almaty: IP «Miras», 265.
- Arhipov, A. N. (2015). Primenenie strukturoobrazovateley v proizvodstve molochnyh produktov. Moscow: OOO «KPF Milorada», 156.
- Zobkova, Z. S., Fursova, T. P. (2005). Osobennosti tekhnologii yogurta pit'evogo tipa. Molochnaya promyshlennost', 11, 32–34.
- Kenijz, N. V., Varivoda, A., Bychkova, T. S., S’yanov, D. A., Nikolaev, I. A. (2020). The use of vegetable proteins in summer sausage production. IOP Conference Series: Earth and Environmental Science, 613, 012051. doi: https://doi.org/10.1088/1755-1315/613/1/012051
- Khasina, E. I., Kolenchenko, E. A., Sgrebneva, M. N., Kovalev, V. V., Khotimchenko, Yu. S. (2003). Antioxidant Activities of a Low Etherified Pectin from the Seagrass Zostera marina. Russian Journal of Marine Biology, 29, 259–261. doi: https://doi.org/10.1023/A:1025493128327
- Eliaz, I., Weil, E., Schwarzbach, J., Wilk, B. (2019). Modified citrus pectin / alginate dietary supplement increased fecal excretion of uranium: A family. Alternative Therapies in Health and Medicine, 25 (4), 20–24.
- Eliaz, I., Raz, A. (2019). Pleiotropic Effects of Modified Citrus Pectin. Nutrients, 11 (11), 2619. doi: https://doi.org/10.3390/nu11112619
- Wikiera, A., Grabacka, M., Byczyński, Ł., Stodolak, B., Mika, M. (2021). Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity. Molecules, 26 (5), 1434. doi: https://doi.org/10.3390/molecules26051434
- Chauhan, S. S., Shetty, A. B., Hatami, E., Chowdhury, P., Yallapu, M. M. (2020). Pectin-Tannic Acid Nano-Complexes Promote the Delivery and Bioactivity of Drugs in Pancreatic Cancer Cells. Pharmaceutics, 12 (3), 285. doi: https://doi.org/10.3390/pharmaceutics12030285
- Zhexenbay, N., Akhmetsadykova, S., Nabiyeva, Zh., Kizatova, M., Iskakova, G. (2020). Using pectin as heavy metals detoxification agent to reduce environmental contamination and health risks. Procedia Environmental Science, Engineering and Management, 7 (4), 551–562.
- Zhang, W., Xu, P., Zhang, H. (2015). Pectin in cancer therapy: A review. Trends in Food Science & Technology, 44 (2), 258–271. doi: https://doi.org/10.1016/j.tifs.2015.04.001
- Smolnikova, F., Moldabayeva, Z., Kenijz, N., Burakovskaya, N., Shadrin, M., Bykov, V. et. al. (2019). Effect of food additives on physical and chemical properties of dietary salt free bread. International Journal of Recent Technology and Engineering, 8 (3), 5939–5941. doi: https://doi.org/10.35940/ijrte.c6174.098319
- Limareva, N., Donchenko, L., Malaknov, V., Semenova, E. (2019). Functional beverages containing pectin from different raw material. IOP Conference Series: Earth and Environmental Science, 337, 012013. doi: https://doi.org/10.1088/1755-1315/337/1/012013
- Gerschenson, L. N., Fissore, E. N., Rojas, A. M., Idrovo Encalada, A. M., Zukowski, E. F., Higuera Coelho, R. A. (2021). Pectins obtained by ultrasound from agroindustrial by-products. Food Hydrocolloids, 118, 106799. doi: https://doi.org/10.1016/j.foodhyd.2021.106799
- Magomedov, M. G. (2015). Proizvodstvo plodoovoschnyh produktov zdorovogo pitaniya. Sankt-Peterburg: Izdatel'stvo «Lan'», 560.
- Artemova, E. N., Simakova, I. V., Tsareva, N. I., Zhubreva, T. V., Rodionova, N. S., Popov, E. S. (2021). Modeling of the technological process of dairy desserts with pectin-containing ingredients. IOP Conference Series: Earth and Environmental Science, 640 (3), 032029. doi: https://doi.org/10.1088/1755-1315/640/3/032029
- Normah, I., Nur Syuhadah, M. Z. (2019). Comparative study on the physicochemical characteristics of chicken sausage incorporated with sutchi catfish (Pangasius hypophthalmus) gelatin, carrageenan and pectin. Food Research, 3 (5), 477–483. doi: https://doi.org/10.26656/fr.2017.3(5).025
- Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Fernández-Prior, Á., Fernández-Bolaños, J. (2019). Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Science, 148, 213–218. doi: https://doi.org/10.1016/j.meatsci.2018.07.003
- Nesterenko, A. A. (2014). The impact of starter cultures on functional and technological properties of model minced meat. Austrian Journal of Technical and Natural Sciences, 7-8, 77–80. Available at: https://cyberleninka.ru/article/n/the-impact-of-starter-cultures-on-functional-and-technological-properties-of-model-minced-meat
- Kenijz, N. V., Nesterenko, A. A. (2015). Investigation of the functional role of pectin in bakery technology. World science, 1 (2 (2)), 28–32.
- Donchenko, L. V., Sokol, N. V., Sanzharovskaya, N. S., Khrapko, O. P., Mikhaylova, T. A. (2020). Functional role of pectin in the bakery technology. IOP Conference Series: Earth and Environmental Science, 488, 012010. doi: https://doi.org/10.1088/1755-1315/488/1/012010
- Noviy spravochnik himika i tekhnologa. Syr'e i produkty promyshlennosti organicheskih i neorganicheskih veschestv. Chast' II (2005). Sankt-Peterburg: «Mir i Sem'ya», 1142.
- Donchenko, L. V., Firsov, G. G. (2006). Tekhnologiya pektina i pektinoproduktov. Krasnodar, 276.
- Salishcheva, O., Donya, D. (2013). A study of the complexing and gelling abilities of pectic substances. Foods and Raw Materials, 1 (2), 76–84. doi: https://doi.org/10.12737/2172
- Azimova, S. T., Kizatova, M. Z., Akhmetova, S. O., Donchenko, L. V., Admayeva, A. M. (2017). Towards food security through application of novel scientific findings. Journal of Security and Sustainability Issues, 6 (4), 719–728. doi: https://doi.org/10.9770/jssi.2017.6.4(16)
- Nikitchyna, T. I., Bezusov, A. T. (2014). The effect of calcium salts nature on the techno-logical properties of biochemically modified pectines. Journal of Food Science and Technology, 8 (6), 18–22. doi: https://doi.org/10.15673/2073-8684.29/2014.33525
- Fallourd, M. J., Viscione, L. (2009). Ingredient selection for stabilisation and texture optimisation of functional beverages and the inclusion of dietary fibre. Functional and Speciality Beverage Technology, 3–38. doi: https://doi.org/10.1533/9781845695569.1.3
- GOST ISO 12081-2013. Milk. Determination of calcium content. Titrimetric method (2018). Moscow: Standartinform, 4.
- Kukharenko, A., Brito, A., Yashin, Y. I., Yashin, A. Y., Kuznetsov, R. M., Markin, P. A. et. al. (2019). Total antioxidant capacity of edible plants commonly found in East Asia and the Middle East determined by an amperometric method. Journal of Food Measurement and Characterization, 14 (2), 809–817. doi: https://doi.org/10.1007/s11694-019-00329-8
- Murzahmetova, M. K., Tayeva, A. M., Baimaganbetova, G. B., Nabiyeva, Zh. S., Kizatova, M. Z., Kulazhanov, K. S., Vitavskaya, A. V. (2015). Antioxidant activity of breads. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6 (3), 1020–1025. Available at: https://www.rjpbcs.com/pdf/2015_6(3)/[142].pdf
- GOST R 54756-2011. Milk and milk products. Determination of mass fraction of whey proteins with Kjeldahl method (2012). Moscow: Standartinform, 11.
- GOST STB ISO 17997-1-2012. Milk. Determination of casein-nitrogen content. Part 1. Indirect method (Reference method). Minsk: Gosstandart, 9.
- GOST 30178-96. Raw material and food-stuffs. Atomic absorption method for determination of toxic elements (1997). Moscow, 32.
- GOST R 51766-2001. Raw material and food-stuffs. Atomic absorption method for determination of arsenic (2011). Moscow: Standartinform, 10.
- GOST R 53183-2008. Foodstuffs. Determination of trace elements. Determination of mercury by cold-vapour atomic absorption spectrometry (CVAAS) method after pressure digestion (2011). Moscow: Standartinform.
- GOST 23452-2015. Milk and milk products. Methods for determination of the hlororganic pesticides residues (2016). Moscow: Standartinform, 12.
- GOST 32689.1-2014. Foods of plant origin. Multiresidue methods for the gas chromatographic determination of pesticide residues. Part 1. General considerations. Moscow: Standartinform, 11.
- GOST 33601-2015. Milk and milk products. Express method for determination of the aflatoxin M content (2019). Moscow: Standartinform.
- GOST 32012-2012. Milk and milk product. Methods for determination of the spores content of mesophilic anaerobic microorganisms. Moscow: Standartinform, 11.
- GOST 10444.15-94. Food products. Methods for determination of quantity of mesophilic aerobes and facultative anaerobes (2010). Moscow: Standartinform, 7.
- GOST 31747-2012. Food products. Methods for detection and quantity determination of coliforms (2013). Moscow: Standartinform, 15.
- GOST 33951-2016. Milk and milk products. Methods for determination of the lactic acid bacteria. Moscow: Standartinform, 10.
- GOST 10444.11-2013 (ISO 15214:1998). Microbiology of food and animal feeding stuffs. Methods for detection and enumeration of mesophilic lactic acid bacteria (2014). Moscow: Standartinform, 15.
- Firsov, G. G., Donchenko, L. V., Firsov, G. G. (2008). Teoreticheskie osnovy i eksperimental'noe modelirovanie protsessov ekstragirovaniya pektinovyh veschestv iz rastitel'noy tkani. Novye tekhnologii, 12, 36–40.
- GOST R 52349-2005. Foodstuffs. Functional foods. Terms and definitions (2006). Moscow: Standartinform, 9.
- Donchenko, L. V., Firsov, G. G. (2007). Pektin: osnovnye svoystva, proizvodstvo i primenenie. Moscow: DeLi print, 276.
- Zhang, J., Wolf, B. (2019). Physico-Chemical Properties of Sugar Beet Pectin-Sodium Caseinate Conjugates via Different Interaction Mechanisms. Foods, 8 (6), 192. doi: https://doi.org/10.3390/foods8060192
- Mesbahi, G., Jamalian, J., Farahnaky, A. (2005). A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocolloids, 19 (4), 731–738. doi: https://doi.org/10.1016/j.foodhyd.2004.08.002
- Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., Rimac Brnčić, S. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28–37. doi: https://doi.org/10.1016/j.tifs.2018.03.022
- Adiletta, G., Brachi, P., Riianova, E., Crescitelli, A., Miccio, M., Kostryukova, N. (2019). A Simplified Biorefinery Concept for the Valorization of Sugar Beet Pulp: Ecofriendly Isolation of Pectin as a Step Preceding Torrefaction. Waste and Biomass Valorization, 11 (6), 2721–2733. doi: https://doi.org/10.1007/s12649-019-00582-4
- Ivanova, M., Petkova, N., Todorova, M., Dobreva, V., Vlaseva, R., Denev, P. et. al. (2020). Influence of citrus and celery pectins on physicochemical and sensory characteristics of fermented dairy products. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 21 (4), 533–545.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Zhanar Nabiyeva, Nurshash Zhexenbay, Galiya Iskakova, Maigul Kizatova, Shynar Akhmetsadykova
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.