Construction of mathematical models of the stressed-strained state of a material with a porous water-saturated base under dynamic load

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.238978

Keywords:

construction of mathematical models, interaction of material with base, dynamic load, boundary condition, general solution

Abstract

Materials of beams, plates, slabs, strips have been commonly applied in various fields of industry and agriculture as flat elements in the structures for machinery and construction. They are associated with the design of numerous engineering structures and facilities, such as the foundations of various buildings, airfield and road surfaces, floodgates, including underground structures.

This paper reports a study into the interaction of the material (of beams, plates, slabs, strips) with the deformable base as a three-dimensional body and in the exact statement of a three-dimensional problem of mathematical physics under dynamic loads.

The tasks of studying the interaction of a material (beams, plates, slabs, strips) with a deformable base have been set. A material lying on a porous water-saturated viscoelastic base is considered as a viscoelastic layer of the same geometry. It is assumed that the lower surface of the layer is flat while the upper surface, in a general case, is not flat and is given by some equation.

Classical approximate theories of the interaction of a layer with a deformable base, based on the Kirchhoff hypothesis, have been considered. Using the well-known hypothesis by Timoshenko and others, the general three-dimensional problem is reduced to a two-dimensional one relative to the displacement of points of the median plane of the layer, which imposes restrictions on external efforts. In the examined problem, there is no median plane. Therefore, as the desired values, displacements and deformations of the points in the plane have been considered, which, under certain conditions, pass into the median plane of the layer.

It is not possible to find a closed analytical solution for most problems while experimental studies often turn out to be time-consuming and dangerous processes

Author Biographies

Allayarbek Aidossov, Institute of Information and Computational Technologies

Doctor of Technical Sciences, Professor, Academician of the Russian Academy of Natural History

Galym Aidosov, Kazakhstan Munay Gas Aimak

Doctor of Technical Sciences, Professor, First Deputy General Director, Academician of the Russian Academy of Natural history

Saltanat Narbayeva, Al-Farabi Kazakh National University

Senior Lecturer

Department of Information Systems

References

  1. Rahmatulin, H. A., Dem'yanov, Yu. A. (2009). Prochnost' pri intensivnyh kratkovremennyh nagruzkah. Moscow: Logos, 512.
  2. Aydosov, A., Aydosov, G. A., Kalimoldaev, M. N., Toybaev, S. N. (2015). Matematicheskoe modelirovanie vzaimodeystviya balki (plastin, plit, polos) s deformiruemym osnovaniem pri dinamicheskih nagruzkah. Almaty, 208.
  3. Aydosov, A. A., Aydosov, G. A., Toybaev, S. N. (2009). Osnovnye vyvody modelirovaniya rasprostraneniya vzryvnyh voln v mnogosloynom neodnorodnom poluprostranstve. Novosti nauki Kazahstana, Nauchno-tehnicheskiy sbornik, 2 (101), 56–60.
  4. Aydosov, A. A., Aydosov, G. A., Toybaev, S. N. (2009). Modelirovanie vzaimodeystvie balki (plastin, plit, polos) peremennoy tolschiny, lezhaschey na neodnorodnom osnovanii. Priblizhennoe uravnenie. Vestnik KazNU, 2 (61), 51–56.
  5. Aydosov, G. A., Aydosov, A. A., Toybaev, S. N. (2009). Modelirovanie vzaymodeystvie balki (plastin, plit, polos) peremennoy tolschiny, lezhaschey na neodnorodnom osnovanii. Postanovka zadachi. Vestnik KazNTU im. K.I. Satpaeva, 4, 41–45.
  6. Aydosov, A. A., Aydosov, G. A., Toybaev, S. N. (2009). Modelirovanie vzaimodeystviya balki (plastin, plit, polos) peremennoy tolschiny, lezhaschey na neodnorodnom osnovanii. Obschie uravneniya. Vestnik KazNU im. Al'-Farabi, 1 (60), 48–53. Available at: https://bm.kaznu.kz/index.php/kaznu/article/view/37/18
  7. Aydosov, A. A., Aydosov, G. A., Toybaev, S. N., Akimhanova, A. (2009). Napryazhenno-deformirovannoe sostoyanie truboprovoda s deformiruemym osnovaniem pri vozdeystvii podvizhnoy napornoy nagruzki. Vestnik KazATK, 3 (58), 133–140.
  8. Li, H., Dong, Z., Ouyang, Z., Liu, B., Yuan, W., Yin, H. (2019). Experimental Investigation on the Deformability, Ultrasonic Wave Propagation, and Acoustic Emission of Rock Salt Under Triaxial Compression. Applied Sciences, 9 (4), 635. doi: https://doi.org/10.3390/app9040635
  9. Ishmamatov, M. R., Avezov, A. X., Ruziyev, T. R., Boltayev, Z. I., Kulmuratov, N. R. (2021). Propagation of Natural Waves on a Multilayer Viscoelastic Cylindrical Body Containing the Surface of a Weakened Mechanical Contact. Journal of Physics: Conference Series, 1921, 012127. doi: https://doi.org/10.1088/1742-6596/1921/1/012127
  10. Petrov, I. B., Sergeev, F. I., Muratov, M. V. (2021). Modelirovanie rasprostraneniya uprugih voln pri razvedochnom burenii na iskusstvennom ledovom ostrove. Materialy XIII Mezhdunarodnoy konferencii po prikladnoy matematike i mehanike v aerokosmicheskoy otrasli (AMMAI’2020). Alushta, 559–561. Available at: http://www.npnj.ru/files/npnj2020_web.pdf
  11. Kumar, R., Vohra, R., Gorla, M. G. (2017). Variational principle and plane wave propagation in thermoelastic medium with double porosity under Lord-Shulman theory. Journal of Solid Mechanics, 9 (2), 423–433. Available at: http://jsm.iau-arak.ac.ir/article_531831_4204e81a530f1f107875455364b773ae.pdf
  12. Ebrahimi, F., Seyfi, A., Dabbagh, A. (2021). The effects of thermal loadings on wave propagation analysis of multi-scale hybrid composite beams. Waves in Random and Complex Media, 1–24. doi: https://doi.org/10.1080/17455030.2021.1956015
  13. Stubblefield, A. G., Spiegelman, M., Creyts, T. T. (2020). Solitary waves in power-law deformable conduits with laminar or turbulent fluid flow. Journal of Fluid Mechanics, 886. doi: https://doi.org/10.1017/jfm.2019.1073
  14. Ebrahimi, F., Dabbagh, A. (2019). Wave propagation analysis of smart nanostructures. CRC Press, 262. doi: https://doi.org/10.1201/9780429279225
  15. Liu, T., Li, X., Zheng, Y., Luo, Y., Guo, Y., Cheng, G., Zhang, Z. (2020). Study on S-wave propagation through parallel rock joints under in situ stress. Waves in Random and Complex Media, 1–24. doi: https://doi.org/10.1080/17455030.2020.1813350
  16. Ebrahimi, F., Dabbagh, A. (2018). Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems. Waves in Random and Complex Media, 31 (1), 25–45. doi: https://doi.org/10.1080/17455030.2018.1558308
  17. Kumar, R., Sharma, N., Lata, P., Abo-Dahab, S. M. (2017). Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media. Applications and Applied Mathematics, 12 (1), 319–336. Available at: https://digitalcommons.pvamu.edu/cgi/viewcontent.cgi?article=1560&context=aam
  18. Li, J., Slesarenko, V., Galich, P. I., Rudykh, S. (2018). Oblique shear wave propagation in finitely deformed layered composites. Mechanics Research Communications, 87, 21–28. doi: https://doi.org/10.1016/j.mechrescom.2017.12.002
  19. Ebrahimian, H., Kohler, M., Massari, A., Asimaki, D. (2018). Parametric estimation of dispersive viscoelastic layered media with application to structural health monitoring. Soil Dynamics and Earthquake Engineering, 105, 204–223. doi: https://doi.org/10.1016/j.soildyn.2017.10.017
  20. Cheshmehkani, S., Eskandari-Ghadi, M. (2017). Passive control of 3D wave propagation with a functionally graded layer. International Journal of Mechanical Sciences, 123, 271–286. doi: https://doi.org/10.1016/j.ijmecsci.2017.02.002
  21. Kozaczka, E., Grelowska, G. (2017). Theoretical Model of Acoustic Wave Propagation in Shallow Water. Polish Maritime Research, 24 (2), 48–55. doi: https://doi.org/10.1515/pomr-2017-0049
  22. Feng, X., Zhang, Q., Wang, E., Ali, M., Dong, Z., Zhang, G. (2020). 3D modeling of the influence of a splay fault on controlling the propagation of nonlinear stress waves induced by blast loading. Soil Dynamics and Earthquake Engineering, 138, 106335. doi: https://doi.org/10.1016/j.soildyn.2020.106335
  23. Singh, A. K., Rajput, P., Chaki, M. S. (2020). Analytical study of Love wave propagation in functionally graded piezo-poroelastic media with electroded boundary and abruptly thickened imperfect interface. Waves in Random and Complex Media, 1–25. doi: https://doi.org/10.1080/17455030.2020.1779387
  24. Li, J., Slesarenko, V., Rudykh, S. (2019). Microscopic instabilities and elastic wave propagation in finitely deformed laminates with compressible hyperelastic phases. European Journal of Mechanics - A/Solids, 73, 126–136. doi: https://doi.org/10.1016/j.euromechsol.2018.07.004
  25. Ai, Z. Y., Ye, Z. K., Yang, J. J. (2021). Thermo-mechanical behaviour of multi-layered media based on the Lord-Shulman model. Computers and Geotechnics, 129, 103897. doi: https://doi.org/10.1016/j.compgeo.2020.103897
  26. Stephan, C. C., Schmidt, H., Zülicke, C., Matthias, V. (2020). Oblique Gravity Wave Propagation During Sudden Stratospheric Warmings. Journal of Geophysical Research: Atmospheres, 125 (1). doi: https://doi.org/10.1029/2019jd031528
  27. Kumari, N., Chattopadhyay, A., Kumar, S., Singh, A. K. (2017). Propagation of SH-waves in two anisotropic layers bonded to an isotropic half-space under gravity. Waves in Random and Complex Media, 27 (2), 195–212. doi: https://doi.org/10.1080/17455030.2016.1212176
  28. Yakovlev, I., Zambalov, S. (2019). Three-dimensional pore-scale numerical simulation of methane-air combustion in inert porous media under the conditions of upstream and downstream combustion wave propagation through the media. Combustion and Flame, 209, 74–98. doi: https://doi.org/10.1016/j.combustflame.2019.07.018
  29. Lees, A. M., Sejian, V., Wallage, A. L., Steel, C. C., Mader, T. L., Lees, J. C., Gaughan, J. B. (2019). The Impact of Heat Load on Cattle. Animals, 9 (6), 322. doi: https://doi.org/10.3390/ani9060322
  30. Li, B., Zheng, Y., Shi, S., Liu, Y., Li, Y., Chen, X. (2019). Microcrack initiation mechanisms of 316LN austenitic stainless steel under in-phase thermomechanical fatigue loading. Materials Science and Engineering: A, 752, 1–14. doi: https://doi.org/10.1016/j.msea.2019.02.077
  31. Schönbauer, B. M., Mayer, H. (2019). Effect of small defects on the fatigue strength of martensitic stainless steels. International Journal of Fatigue, 127, 362–375. doi: https://doi.org/10.1016/j.ijfatigue.2019.06.021
  32. Hourigan, S. K., Subramanian, P., Hasan, N. A., Ta, A., Klein, E., Chettout, N. et. al. (2018). Comparison of Infant Gut and Skin Microbiota, Resistome and Virulome Between Neonatal Intensive Care Unit (NICU) Environments. Frontiers in Microbiology, 9. doi: https://doi.org/10.3389/fmicb.2018.01361

Downloads

Published

2021-10-29

How to Cite

Aidossov, A., Aidosov, G., & Narbayeva, S. (2021). Construction of mathematical models of the stressed-strained state of a material with a porous water-saturated base under dynamic load. Eastern-European Journal of Enterprise Technologies, 5(7 (113), 25–35. https://doi.org/10.15587/1729-4061.2021.238978

Issue

Section

Applied mechanics