Development of an algorithm for calculating stable solutions of the Saint-Venant equation using an upwind implicit difference scheme
DOI:
https://doi.org/10.15587/1729-4061.2021.239148Keywords:
Saint-Venant equations, hyperbolic system, implicit scheme, upwind difference scheme, stabilityAbstract
The problem of numerical determination of Lyapunov-stable (exponential stability) solutions of the Saint-Venant equations system has remained open until now. The authors of this paper previously proposed an implicit upwind difference splitting scheme, but its practical applicability was not indicated there. In this paper, the problem is solved successfully, namely, an algorithm for calculating Lyapunov-stable solutions of the Saint-Venant equations system is developed and implemented using an upwind implicit difference splitting scheme on the example of the Big Almaty Canal (hereinafter BAC). As a result of the proposed algorithm application, it was established that:
1) we were able to perform a computational calculation of the numerical determination problem of the water level and velocity on a part of the BAC (10,000 meters) located in the Almaty region;
2) the numerical values of the water level height and horizontal velocity are consistent with the actual measurements of the parameters of the water flow in the BAC;
3) the proposed computational algorithm is stable;
4) the numerical stationary solution of the system of Saint-Venant equations on the example of the BAC is Lyapunov-stable (exponentially stable);
5) the obtained results (according to the BAC) show the efficiency of the developed algorithm based on an implicit upwind difference scheme according to the calculated time.
Since we managed to increase the values of the difference grid time step up to 0.8 for calculating the numerical solution according to the proposed implicit scheme.
References
- Klimovich, V. I., Petrov, O. A. (2012). Chislennoe modelirovanie techenii pri rabote vodoslivnoi plotiny Bureiskoi GES. Izvestiia Vserossiiskogo nauchno-issledovatelskogo instituta gidrotekhniki im. B. E. Vedeneeva, 266, 22–37.
- Tsyganova, M. V., Lemeshko, E. M. (2017). The shelf water dynamics in the Danube delta region based on numerical simulation. Krym – ekologo-ekonomicheskii region. Prostranstvo noosfernogo razvitiia. Sevastopol, 260–262. Available at: https://www.elibrary.ru/item.asp?id=30118605
- Rakhuba, A. V., Shmakova, M. V. (2015). Mathematical modeling of the dynamics of sedimentation as a factor in eutrophication of the water masses of the Kuibyshev reservoir. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 17 (4), 189–193. Available at: https://cyberleninka.ru/article/n/matematicheskoe-modelirovanie-dinamiki-zaileniya-kak-faktora-evtrofirovaniya-vodnyh-mass-kuybyshevskogo-vodohranilischa
- Sheverdiaev, I. V., Berdnikov, S. V., Kleschenkov, A. V. (2017). HEC-RAS using for hydrologic regime modeling on the Don’s delta. Ekologiia. Ekonomika. Informatika. Seriia: Sistemnyianaliz i modelirovanie ekonomicheskikh i ekologicheskikh sistem, 1 (2), 113–122. Available at: https://www.elibrary.ru/item.asp?id=30298680
- Bogomolov, A. V., Lepikhin, A. P., Tiunov, A. A. (2014). Ispolzovanie chislennykh gidrodinamicheskikh modelei dlia otsenki effektivnosti proektnykh reshenii po zaschite beregov (na primere reki Don v raione goroda Pavlovska). Vodnoe khoziaistvo Rossii: problemy, tekhnologii, upravlenie, 1, 50–57. Available at: https://cyberleninka.ru/article/n/ispolzovanie-chislennyh-gidrodinamicheskih-modeley-dlya-otsenki-effektivnosti-proektnyh-resheniy-po-zaschite-beregov-na-primere
- Oshkin, M. I., Pisarev, A. V., Zheltobriukhov, V. F., Polozova, I. A., Kartushina, Iu. N. (2015). Ispolzovanie kompiuternogo modelirovaniia dinamiki poverkhnostnykh vod reki Medveditsy dlia resheniia prirodookhrannykh zadach. Vestnik Kazanskogo tekhnologicheskogo universiteta, 18 (18), 246–248. Available at: https://cyberleninka.ru/article/n/ispolzovanie-kompyuternogo-modelirovaniya-dinamiki-poverhnostnyh-vod-reki-medveditsy-dlya-resheniya-prirodoohrannyh-zadach
- Vasilev, O. F., Godunov, S. K., Pritvits, N. A., Temnoeva, T. A., Friazinova, I. L., Shugrin, S. M. (1963). Chislennii metod rascheta rasprostraneniia dlinnykh voln v otkrytykh ruslakh i prilozhenie ego k zadache o pavodke. Doklady AN SSSR, 151 (3), 525–527. Available at: http://mi.mathnet.ru/dan28337
- Hayat, A., Shang, P. (2019). A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope. Automatica, 100, 52–60. doi: http://doi.org/10.1016/j.automatica.2018.10.035
- Godunov, S. K. (1979). Uravneniia matematicheskoi fiziki. Moscow: «Nauka», 392. Available at: http://eqworld.ipmnet.ru/ru/library/books/Godunov1979ru.djvu
- Bastin, G., Coron, J. M. (2016). Stability and Boundary Stabilization of 1-D Hyperbolic Systems. itemirkhauser Basel. Springer International Publishing Switzerland, 307. doi: http://doi.org/10.1007/978-3-319-32062-5
- Göttlich, S., Schillen, P. (2017). Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization. European Journal of Control, 35, 11–18. doi: http://doi.org/10.1016/j.ejcon.2017.02.002
- Bastin, G., Coron, J.-M. (2017). A quadratic Lyapunov function for hyperbolic density–velocity systems with nonuniform steady states. Systems & Control Letters, 104, 66–71. doi: http://doi.org/10.1016/j.sysconle.2017.03.013
- Bastin, G., Coron, J.-M., d’ Andréa-Novel, B. (2009). On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks & Heterogeneous Media, 4 (2), 177–187. doi: http://doi.org/10.3934/nhm.2009.4.177
- Coron, J.-M., Bastin, G. (2015). Dissipative Boundary Conditions for One-Dimensional Quasi-linear Hyperbolic Systems: Lyapunov Stability for the C1-Norm. SIAM Journal on Control and Optimization, 53 (3), 1464–1483. doi: http://doi.org/10.1137/14097080x
- Coron, J.-M., Hu, L., Olive, G. (2017). Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation. Automatica, 84, 95–100. doi: http://doi.org/10.1016/j.automatica.2017.05.013
- Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517. doi: http://doi.org/10.1017/s0962492902000077
- Volkov, K. N. (2005). Realizatsiia skhemy rasschepleniia na raznesennoi setke dlia rascheta nestatsionarnykh techenii viazkoi neszhimaemoi zhidkosti. Vychislitelnye metody i programmirovaniia, 6 (1), 269–282. Available at: http://mi.mathnet.ru/vmp648
- Blokhin, A. M., Aloev, R. D., Hudayberganov, M. U. (2014). One Class of Stable Difference Schemes for Hyperbolic System. American Journal of Numerical Analysis, 2 (3), 85–89. Available at: http://pubs.sciepub.com/ajna/2/3/4
- Aloev, R. D., Khudoyberganov, M. U., Blokhin, A. M. (2018). Construction and research of adequate computational models for quasilinear hyperbolic systems. Numerical Algebra, Control & Optimization, 8 (3), 287–299. doi: http://doi.org/10.3934/naco.2018017
- Berdyshev, A., Imomnazarov, K., Tang, J.-G., Mikhailov, A. (2016). The Laguerre spectral method as applied to numerical solution of a two-dimensional linear dynamic seismic problem for porous media. Open Computer Science, 6 (1), 208–212. doi: http://doi.org/10.1515/comp-2016-0018
- Diagne, A., Diagne, M., Tang, S., Krstic, M. (2015). Backstepping stabilization of the linearized Saint-Venant-Exner Model: Part II- output feedback. 2015 54th IEEE Conference on Decision and Control (CDC), 1248–1253. doi: http://doi.org/10.1109/cdc.2015.7402382
- Samarskii, A. A., Nikolaev, E. S. (1978). Metody resheniia setochnykh uravnenii. Moscow: «Nauka», 532. Available at: http://samarskii.ru/books/book1978.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Rakhmatillo Aloev, Abdumauvlen Berdyshev, Aziza Akbarova, Zharasbek Baishemirov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.