Wave propagation in a rectangular bar, exposed to the impact tangential forces
DOI:
https://doi.org/10.15587/1729-4061.2014.24816Keywords:
unsteady waves, rectangular bar, impact shear forces, Lame’s equationAbstract
In modern technology, there are more and more cases of action of impact loads on work items of buildings, machines and constructions, therefore, the strength calculations of these items under the dynamic effects become important.
To solve the problems, arising from the dynamic effects, it is necessary to use the continuum mechanics methods and, in particular in many cases, the methods of the dynamic theory of elasticity. Analytical studies allow to find the exact problem solutions, which is very important, because the exact solutions allow to estimate the main features of the solution in general - the nature and the extent of influence of various set parameters on it. On the other hand, exact solutions are always reference and needed, in particular, for developing numerical methods for more complex cases.
This work is a continuation of the works of N. Rassoulova, G. Shamilova, dedicated to studying the propagation of unsteady waves in the prisms of rectangular cross section. Approach to solving this problem differs markedly from all previous issues of the dynamics of rectangular prisms, which mainly investigated their dispersion characteristics.
This paper deals with studying the process of propagation of unsteady waves in semi-infinite rectangular bars, exposed to impact shear forces on the face platform. System of exact three-dimensional motion equations of an isotropic elastic body is used. Applying a peculiar integration method, previously developed by the authors of this paper, exact analytic solutions to the posed problem for the final time value are found.
The results can be implemented in the production in designing special constructions, where there are impulsive effects on them.References
- Fraser, W. B. Stress wave propagation in rectangular bars [Text] / W. B. Fraser// Int. J. Solids structures 5. – 1969. – Vol. 2. – P. 379–397.
- Medick, M. A. (1968). Extensional Waves in Elastic Bars of Rectangular Cross Section. The J. of the Acoust. Soc. of Am. Vol. 43, 152–161
- Хартеленди П., Приближенная теория симметричных колебаний упругих стержней прямоугольного или квадратного сечения, Прикладная механика 10,1973, №4 стр.226-231.
- Jones, O. E. and Ellis. Longitudinal strain pulse propagation in wide rectangular bars [Text] / O. E. Jones, Ellis. – J. Appl. Mech. Trans. ASME 83, 1963. – P. 61–69.
- Расулова, Н. Б., Распространение волн в призматическом брусе подверженном действии осевых сил, [Текст] / Н. Б. Расулова // Изв. РАН, “Механика твердого тела”. – 1997. – № 6. – С. 176–179.
- Rassoulova, N. B. On dynamics of bar of rectangular cross section [Text] / N. B. Rassoulova // Transactions of the ASME. – 2001. – Vol. 68. – P. 662–666.
- Расулова, Н. Б. Шамилова Г.Р., Исследования касательного удара по торцу полубесконечного прямоугольного бруса, [Текст] / Н. Б. Расулова, Г. Р. Шамилова // Механика и машиностроение. – 2011. – № 2. – C. 103–108.
- Miamoto, T., Yasuura K., Numerical analysis in isotropic elastic wave-guides by mode-matching method [Text] / T. Miamoto, K. Yasuura// IEEE Trans. Sonics. And Ultrasonic’s 24. – 1977. – № 6. – P. 359–375.
- Медик, М. А. Дисперсия продольных волн в стержнях прямоугольного сечения. [Текст] / М. А. Медик // Прикладная механика, Москва, Мир. – 1967. – № 3. – С. 145-180.
- Бондеренко, А. А. Нормальные волны в прямоугольном упругом волноводе. [Текст] / А. А. Бондеренко// ISSN 1028-7507 Акустичний висник. -2007. – Т. 10, № 4. – C. 12–27.
- Hayashi T., Song W.J., Rose J. L. Guided wave Dispersion curves for a bar with an arbitrary cross-section. [Текст] / T. Hayashi, W.J. Song, J. L. Rose // Ultrasonic’s. -2003. – 41. – P. 175-183.
- Амензаде, Ю. А. Теория упругости. [Текст] / Ю. А. Амензаде. – Мир, 1979. – 284 c.
- Doetsch, G. Handbuch der Laplace-Transformation [Text] / G. Doetsch // Birkhauser Basel. – 1950. – Vol. 2. – P. 215-230.
- Расулова, Н. Б. Распространение волн в призматическом брусе подверженном действии осевых сил [Текст] / Н. Б. Расулова // Изв. РАН, “Механика твердого тела”. – 1997. – № 6. – C. 176–179.
- Fraser, W .B. (1969). Stress wave propagation in rectangular bars, Int. J. Solids structures 5, Vol. 2, 379–397.
- Medick, M. A. (1968). Extensional Waves in Elastic Bars of Rectangular Cross Section. The J. of the Acoust. Soc. of Am. Vol. 43, 152–161
- Hertelendy. P. (1973). An approximate theory governing symmetric motion of elastic rods rectangular or square cross section., App. Mech., 10, 226–231.
- Jones O. E., Ellis (1963). Longitudinal strain pulse propagation in wide rectangular bars. J. Appl. Mech. Trans. ASME 83, 61–69.
- Rassoulova, N. B. (1997). Wave Propagation in rectangular bars exposed to axial forces, Izv.RAN, "Mechanics of Solids", Vol. 6, 176–179.
- Rassoulova, N. B. (2001). On dynamics of bar rectangular cross section. Transactions of the ASME, Vol. 68, 662–666.
- Rassoulova, N. B., Shamilova, G. R. (2011). Studies on the impact on the end face of semi-infinite rectangular bars. Mechanics and Mechanical Engineering, 2, 103–108
- Miamoto, T., Yasuura K. (1977). Numerical analysis in isotropic elastic wave-guides by mode-matching method. IEEE Trans. Sonics. And Ultrasonic’s 24. SU. № 6, 359–375.
- Medick, M. A. (1967). Dispersion of longitudinal waves in a rod with a rectangular cross section. AppliedMechanics, Moscow, Mir, Vol. 3, 145–180.
- Bondarenko, A. A. (2007). Normal waves in a rectangular elastic waveguide» ISSN 1028-7507 Akustichny visnik. Vol. 10, 12–27.
- Hayashi, T., Song, W. J, Rose, J. L. (2003). Guided wave Dispersion curves for a bar with an arbitrary cross-section. Ultrasonic's, Vol. 41, 175–183.
- Amenzade, Yu. A. (1979). Theory of Elasticity. Mir, 284.
- Doetsch, G. (1950). Handbook of Laplace Transformation, Vol. 2, 215-230.
- Rassoulova, N.B. (1997). Wave Propagation in a prismatic tool bar exposed to axial forces. Math. RussianAcademyofSciences, "MechanicsofSolids", Vol. 6, 176-179.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Назила Билал Расулова, Гюльнар Ровшан Шамилова
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.